
Richard Stallman is the prophet of the free software movement. He understood
the dangers of software patents years ago. Now that this has become a crucial
issue in the world, buy this book and read what he said.
—Tim Berners-Lee, inventor of the World Wide Web

Richard Stallman is the philosopher king of software. He single-handedly ignited
what has become a world-wide movement to create software that is Free, with a
capital F. He has toiled for years at a project that many once considered a fool’s
errand, and now that is widely seen as “inevitable.”
—Simon L. Garfinkel, computer science author and columnist

By his hugely successful efforts to establish the idea of “Free Software,” Stallman
has made a massive contribution to the human condition. His contribution com-
bines elements that have technical, social, political, and economic consequences.
—Gerald Jay Sussman, Matsushita Professor of Electrical Engineering, MIT

RMS is the leading philosopher of software. You may dislike some of his atti-
tudes, but you cannot avoid his ideas. This slim volume will make those ideas
readily accessible to those who are confused by the buzzwords of rampant com-
mercialism. This book needs to be widely circulated and widely read.
—Peter Salus, computer science writer, book reviewer, and UNIX historian

Richard is the leading force of the free software movement. This book is very
important to spread the key concepts of free software world-wide, so everyone
can understand it. Free software gives people freedom to use their creativity.
—Masayuki Ida, professor, Graduate School of International Management,
Aoyama Gakuin University

Free Software, Free Society
Selected Essays of Richard M. Stallman

Second Edition

Richard M. Stallman

This is the second edition of Free Software, Free Society: Selected Essays of
Richard M. Stallman.

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1335

Copyright c© 2002, 2010 Free Software Foundation, Inc.

Verbatim copying and distribution of this entire book are permitted
worldwide, without royalty, in any medium, provided this notice is
preserved. Permission is granted to copy and distribute translations
of this book from the original English into another language provided
the translation has been approved by the Free Software Foundation
and the copyright notice and this permission notice are preserved on
all copies.

ISBN 978-0-9831592-0-9

Cover design by Rob Myers.
Cover photograph by Peter Hinely.

iii

Contents

Foreword . v

Preface to the Second Edition . ix

Part I: The GNU Project and Free Software

1 The Free Software Definition . 3

2 The GNU Project . 7

3 The Initial Announcement of the GNU Operating System . . 25

4 The GNU Manifesto . 27

5 Why Software Should Not Have Owners 37

6 Why Software Should Be Free . 43

7 Why Schools Should Exclusively Use Free Software 57

8 Releasing Free Software If You Work at a University 59

9 Why Free Software Needs Free Documentation 61

10 Selling Free Software . 65

11 The Free Software Song . 69

Part II: What’s in a Name?

12 What’s in a Name? . 73

13 Categories of Free and Nonfree Software 77

14 Why Open Source Misses the Point of Free Software 83

15 Did You Say “Intellectual Property”?

It’s a Seductive Mirage . 89

16 Words to Avoid (or Use with Care)

Because They Are Loaded or Confusing 93

Part III: Copyright, Copyleft

17 The Right to Read: A Dystopian Short Story 105

18 Misinterpreting Copyright—A Series of Errors 111

19 Science Must Push Copyright Aside . 121

20 Freedom—or Copyright . 123

21 What Is Copyleft? . 127

22 Copyleft: Pragmatic Idealism . 129

iv Free Software, Free Society, 2nd ed.

Part IV: Software Patents: Danger to Programmers

23 Anatomy of a Trivial Patent . 135

24 Software Patents and Literary Patents 139

25 The Danger of Software Patents . 143

26 Microsoft’s New Monopoly . 159

Part V: The Licenses

27 Introduction to the Licenses . 165

28 The GNU General Public License . 171

29 Why Upgrade to GPLv3 . 185

30 The GNU Lesser General Public License 189

31 GNU Free Documentation License . 193

Part VI: Traps and Challenges

32 Can You Trust Your Computer? . 205

33 Who Does That Server Really Serve? . 209

34 Free but Shackled: The Java Trap . 215

35 The JavaScript Trap . 219

36 The X Window System Trap . 223

37 The Problem Is Software Controlled by Its Developer 227

38 We Can Put an End to Word Attachments 231

39 Thank You, Larry McVoy . 235

Part VII: An Assessment and a Look Ahead

40 Computing “Progress”: Good and Bad 239

41 Avoiding Ruinous Compromises . 241

42 Overcoming Social Inertia . 245

43 Freedom or Power? . 247

Appendix A: A Note on Software . 249

Appendix B: Translations of the Term “Free Software” 253

Index . 255

Foreword v

Foreword

Every generation has its philosopher—a writer or an artist who captures the
imagination of a time. Sometimes these philosophers are recognized as such;
often it takes generations before the connection is made real. But recognized
or not, a time gets marked by the people who speak its ideals, whether in the
whisper of a poem, or the blast of a political movement.

Our generation has a philosopher. He is not an artist, or a professional writer.
He is a programmer. Richard Stallman began his work in the labs of MIT, as
a programmer and architect building operating system software. He has built
his career on a stage of public life, as a programmer and an architect founding
a movement for freedom in a world increasingly defined by “code.”

“Code” is the technology that makes computers run. Whether inscribed in
software or burned in hardware, it is the collection of instructions, first written in
words, that directs the functionality of machines. These machines—computers—
increasingly define and control our life. They determine how phones connect,
and what runs on TV. They decide whether video can be streamed across a
broadband link to a computer. They control what a computer reports back to
its manufacturer. These machines run us. Code runs these machines.

What control should we have over this code? What understanding? What
freedom should there be to match the control it enables? What power?

These questions have been the challenge of Stallman’s life. Through his works
and his words, he has pushed us to see the importance of keeping code “free.”
Not free in the sense that code writers don’t get paid, but free in the sense that
the control coders build be transparent to all, and that anyone have the right
to take that control, and modify it as he or she sees fit. This is “free software”;
“free software” is one answer to a world built in code.

“Free.” Stallman laments the ambiguity in his own term. There’s nothing to
lament. Puzzles force people to think, and this term “free” does this puzzling
work quite well. To modern American ears, “free software” sounds utopian,
impossible. Nothing, not even lunch, is free. How could the most important
words running the most critical machines running the world be “free.” How
could a sane society aspire to such an ideal?

Yet the odd clink of the word “free” is a function of us, not of the term. “Free”
has different senses, only one of which refers to “price.” A much more funda-
mental sense of “free” is the “free,” Stallman says, in the term “free speech,” or
perhaps better in the term “free labor.” Not free as in costless, but free as in
limited in its control by others. Free software is control that is transparent, and
open to change, just as free laws, or the laws of a “free society,” are free when

Copyright c© 2002 Free Software Foundation, Inc.
This foreword was originally published, in 2002, as the introduction to the first

edition. This version is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

vi Free Software, Free Society, 2nd ed.

they make their control knowable, and open to change. The aim of Stallman’s
“free software movement” is to make as much code as it can transparent, and
subject to change, by rendering it “free.”

The mechanism of this rendering is an extraordinarily clever device called
“copyleft” implemented through a license called GPL. Using the power of copy-
right law, “free software” not only assures that it remains open, and subject to
change, but that other software that takes and uses “free software” (and that
technically counts as a “derivative”) must also itself be free. If you use and adapt
a free software program, and then release that adapted version to the public,
the released version must be as free as the version it was adapted from. It must,
or the law of copyright will be violated.

“Free software,” like free societies, has its enemies. Microsoft has waged a
war against the GPL, warning whoever will listen that the GPL is a “dangerous”
license. The dangers it names, however, are largely illusory. Others object to
the “coercion” in GPL’s insistence that modified versions are also free. But a
condition is not coercion. If it is not coercion for Microsoft to refuse to permit
users to distribute modified versions of its product Office without paying it
(presumably) millions, then it is not coercion when the GPL insists that modified
versions of free software be free too.

And then there are those who call Stallman’s message too extreme. But
extreme it is not. Indeed, in an obvious sense, Stallman’s work is a simple
translation of the freedoms that our tradition crafted in the world before code.
“Free software” would assure that the world governed by code is as “free” as our
tradition that built the world before code.

For example: A “free society” is regulated by law. But there are limits that
any free society places on this regulation through law: No society that kept its
laws secret could ever be called free. No government that hid its regulations
from the regulated could ever stand in our tradition. Law controls. But it does
so justly only when visibly. And law is visible only when its terms are knowable
and controllable by those it regulates, or by the agents of those it regulates
(lawyers, legislatures).

This condition on law extends beyond the work of a legislature. Think about
the practice of law in American courts. Lawyers are hired by their clients to
advance their clients’ interests. Sometimes that interest is advanced through lit-
igation. In the course of this litigation, lawyers write briefs. These briefs in turn
affect opinions written by judges. These opinions decide who wins a particular
case, or whether a certain law can stand consistently with a constitution.

All the material in this process is free in the sense that Stallman means.
Legal briefs are open and free for others to use. The arguments are transparent
(which is different from saying they are good) and the reasoning can be taken
without the permission of the original lawyers. The opinions they produce can
be quoted in later briefs. They can be copied and integrated into another brief
or opinion. The “source code” for American law is by design, and by principle,
open and free for anyone to take. And take lawyers do—for it is a measure of

Foreword vii

a great brief that it achieves its creativity through the reuse of what happened
before. The source is free; creativity and an economy is built upon it.

This economy of free code (and here I mean free legal code) doesn’t starve
lawyers. Law firms have enough incentive to produce great briefs even though
the stuff they build can be taken and copied by anyone else. The lawyer is a
craftsman; his or her product is public. Yet the crafting is not charity. Lawyers
get paid; the public doesn’t demand such work without price. Instead this
economy flourishes, with later work added to the earlier.

We could imagine a legal practice that was different—briefs and arguments
that were kept secret; rulings that announced a result but not the reasoning.
Laws that were kept by the police but published to no one else. Regulation that
operated without explaining its rule.

We could imagine this society, but we could not imagine calling it “free.”
Whether or not the incentives in such a society would be better or more efficiently
allocated, such a society could not be known as free. The ideals of freedom, of life
within a free society, demand more than efficient application. Instead, openness
and transparency are the constraints within which a legal system gets built, not
options to be added if convenient to the leaders. Life governed by software code
should be no less.

Code writing is not litigation. It is better, richer, more productive. But the
law is an obvious instance of how creativity and incentives do not depend upon
perfect control over the products created. Like jazz, or novels, or architecture,
the law gets built upon the work that went before. This adding and changing
is what creativity always is. And a free society is one that assures that its most
important resources remain free in just this sense.

This book collects the writing of Richard Stallman in a manner that will make
its subtlety and power clear. The essays span a wide range, from copyright to
the history of the free software movement. They include many arguments not
well known, and among these, an especially insightful account of the changed
circumstances that render copyright in the digital world suspect. They will serve
as a resource for those who seek to understand the thought of this most powerful
man—powerful in his ideas, his passion, and his integrity, even if powerless in
every other way. They will inspire others who would take these ideas, and build
upon them.

I don’t know Stallman well. I know him well enough to know he is a hard
man to like. He is driven, often impatient. His anger can flare at friend as easily
as foe. He is uncompromising and persistent; patient in both.

Yet when our world finally comes to understand the power and danger of
code—when it finally sees that code, like laws, or like government, must be
transparent to be free—then we will look back at this uncompromising and
persistent programmer and recognize the vision he has fought to make real: the
vision of a world where freedom and knowledge survives the compiler. And we
will come to see that no man, through his deeds or words, has done as much to
make possible the freedom that this next society could have.

viii Free Software, Free Society, 2nd ed.

We have not earned that freedom yet. We may well fail in securing it. But
whether we succeed or fail, in these essays is a picture of what that freedom could
be. And in the life that produced these words and works, there is inspiration
for anyone who would, like Stallman, fight to create this freedom.

Lawrence Lessig

Lawrence Lessig is a Professor of Law at Harvard Law School, the director of the
Edmond J. Safra Foundation Center for Ethics, and the founder of Stanford Law
School’s Center for Internet and Society. For much of his career, he focused his
work on law and technology, especially as it affects copyright. He is the author of
numerous books and has served as a board member of many organizations,
including the Free Software Foundation.

Preface to the Second Edition ix

Preface to the Second Edition

The second edition of Free Software, Free Society holds updated versions of most
of the essays from the first edition, as well as many new essays published since
the first edition.

The essays about software patents are now in one section and those about
copyright in another, to set an example of not grouping together these two laws,
whose workings and effects on software are totally different.

Another section presents the GNU licenses, with a new introduction written
with Brett Smith giving their history and the motives for each of them. One
of the essays explains why software projects should upgrade to version 3 of the
GNU General Public License.

There is now a section on issues of terminology, since the way we describe
an issue affects how people think about it.

The last two sections describe some of the traps free software developers and
users face—new ways to lose your freedom, and how to avoid them.

We have also added an index, to complement the appendix on software.
We would like to thank Jeanne Rasata for managing the project, editing the

book, formatting the text, and creating the index. Thanks also to Karl Berry
for technical assistance with Texinfo, Brett Smith for all other technical help
and for valuable feedback, and Rob Myers for formatting the cover.

Part I:

The GNU Project

and Free Software

Chapter 1: The Free Software Definition 3

1 The Free Software Definition

We maintain this free software definition to show clearly what must be true
about a particular software program for it to be considered free software. From
time to time we revise this definition to clarify it. If you would like to review
the changes we’ve made, please see the History section, following the definition,
at http://gnu.org/philosophy/free-sw.html.

“Free software” is a matter of liberty, not price. To understand the concept,
you should think of “free” as in “free speech,” not as in “free beer.”

Free software is a matter of the users’ freedom to run, copy, distribute, study,
change and improve the software. More precisely, it means that the program’s
users have the four essential freedoms:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and change it to make it do
what you wish (freedom 1). Access to the source code is a precondition for
this.

• The freedom to redistribute copies so you can help your neighbor (free-
dom 2).

• The freedom to distribute copies of your modified versions to others (free-
dom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.

A program is free software if users have all of these freedoms. Thus, you
should be free to redistribute copies, either with or without modifications, either
gratis or charging a fee for distribution, to anyone anywhere. Being free to do
these things means (among other things) that you do not have to ask or pay for
permission to do so.

You should also have the freedom to make modifications and use them pri-
vately in your own work or play, without even mentioning that they exist. If
you do publish your changes, you should not be required to notify anyone in
particular, or in any particular way.

The freedom to run the program means the freedom for any kind of person or
organization to use it on any kind of computer system, for any kind of overall job
and purpose, without being required to communicate about it with the developer
or any other specific entity. In this freedom, it is the user’s purpose that matters,
not the developer’s purpose; you as a user are free to run the program for your

Copyright c© 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2009,
2010 Free Software Foundation, Inc.

The free software definition was first published in 1996, on http://gnu.org.
This version is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/philosophy/free-sw.html
http://gnu.org

4 Free Software, Free Society, 2nd ed.

purposes, and if you distribute it to someone else, she is then free to run it for
her purposes, but you are not entitled to impose your purposes on her.

The freedom to redistribute copies must include binary or executable forms of
the program, as well as source code, for both modified and unmodified versions.
(Distributing programs in runnable form is necessary for conveniently installable
free operating systems.) It is OK if there is no way to produce a binary or
executable form for a certain program (since some languages don’t support that
feature), but you must have the freedom to redistribute such forms should you
find or develop a way to make them.

In order for freedoms 1 and 3 (the freedom to make changes and the freedom
to publish improved versions) to be meaningful, you must have access to the
source code of the program. Therefore, accessibility of source code is a necessary
condition for free software. Obfuscated “source code” is not real source code and
does not count as source code.

Freedom 1 includes the freedom to use your changed version in place of the
original. If the program is delivered in a product designed to run someone else’s
modified versions but refuse to run yours—a practice known as “tivoization” or
(in its practitioners’ perverse terminology) as “secure boot”—freedom 1 becomes
a theoretical fiction rather than a practical freedom. This is not sufficient. In
other words, these binaries are not free software even if the source code they are
compiled from is free.

One important way to modify a program is by merging in available free
subroutines and modules. If the program’s license says that you cannot merge
in a suitably licensed existing module—for instance, if it requires you to be
the copyright holder of any code you add—then the license is too restrictive to
qualify as free.

Freedom 3 includes the freedom to release your modified versions as free
software. A free license may also permit other ways of releasing them; in other
words, it does not have to be a copyleft license. However, a license that requires
modified versions to be nonfree does not qualify as a free license.

In order for these freedoms to be real, they must be permanent and irre-
vocable as long as you do nothing wrong; if the developer of the software has
the power to revoke the license, or retroactively change its terms, without your
doing anything wrong to give cause, the software is not free.

However, certain kinds of rules about the manner of distributing free software
are acceptable, when they don’t conflict with the central freedoms. For example,
copyleft (very simply stated) is the rule that when redistributing the program,
you cannot add restrictions to deny other people the central freedoms. This rule
does not conflict with the central freedoms; rather it protects them.

“Free software” does not mean “noncommercial.” A free program must be
available for commercial use, commercial development, and commercial distri-
bution. Commercial development of free software is no longer unusual; such free
commercial software is very important. You may have paid money to get copies
of free software, or you may have obtained copies at no charge. But regardless

Chapter 1: The Free Software Definition 5

of how you got your copies, you always have the freedom to copy and change
the software, even to sell copies.

Whether a change constitutes an improvement is a subjective matter. If your
modifications are limited, in substance, to changes that someone else considers
an improvement, that is not freedom.

However, rules about how to package a modified version are acceptable, if
they don’t substantively limit your freedom to release modified versions, or your
freedom to make and use modified versions privately. Thus, it is acceptable for
the license to require that you change the name of the modified version, remove
a logo, or identify your modifications as yours. As long as these requirements are
not so burdensome that they effectively hamper you from releasing your changes,
they are acceptable; you’re already making other changes to the program, so you
won’t have trouble making a few more.

Rules that “if you make your version available in this way, you must make
it available in that way also” can be acceptable too, on the same condition. An
example of such an acceptable rule is one saying that if you have distributed a
modified version and a previous developer asks for a copy of it, you must send
one. (Note that such a rule still leaves you the choice of whether to distribute
your version at all.) Rules that require release of source code to the users for
versions that you put into public use are also acceptable.

In the GNU Project, we use copyleft to protect these freedoms legally for
everyone. But noncopylefted free software also exists. We believe there are
important reasons why it is better to use copyleft, but if your program is non-
copylefted free software, it is still basically ethical. (See “Categories of Free and
Nonfree Software” (p. 77) for a description of how “free software,” “copylefted
software” and other categories of software relate to each other.)

Sometimes government export control regulations and trade sanctions can
constrain your freedom to distribute copies of programs internationally. Software
developers do not have the power to eliminate or override these restrictions, but
what they can and must do is refuse to impose them as conditions of use of
the program. In this way, the restrictions will not affect activities and people
outside the jurisdictions of these governments. Thus, free software licenses must
not require obedience to any export regulations as a condition of any of the
essential freedoms.

Most free software licenses are based on copyright, and there are limits on
what kinds of requirements can be imposed through copyright. If a copyright-
based license respects freedom in the ways described above, it is unlikely to have
some other sort of problem that we never anticipated (though this does happen
occasionally). However, some free software licenses are based on contracts, and
contracts can impose a much larger range of possible restrictions. That means
there are many possible ways such a license could be unacceptably restrictive
and nonfree.

We can’t possibly list all the ways that might happen. If a contract-based
license restricts the user in an unusual way that copyright-based licenses cannot,

6 Free Software, Free Society, 2nd ed.

and which isn’t mentioned here as legitimate, we will have to think about it, and
we will probably conclude it is nonfree.

When talking about free software, it is best to avoid using terms like “give
away” or “for free,” because those terms imply that the issue is about price, not
freedom. Some common terms such as “piracy” embody opinions we hope you
won’t endorse. See “Words to Avoid (or Use with Care)” (p. 93) for a discussion
of these terms. We also have a list of proper translations of “free software” into
various languages (p. 253).

Finally, note that criteria such as those stated in this free software definition
require careful thought for their interpretation. To decide whether a specific
software license qualifies as a free software license, we judge it based on these
criteria to determine whether it fits their spirit as well as the precise words. If
a license includes unconscionable restrictions, we reject it, even if we did not
anticipate the issue in these criteria. Sometimes a license requirement raises an
issue that calls for extensive thought, including discussions with a lawyer, before
we can decide if the requirement is acceptable. When we reach a conclusion
about a new issue, we often update these criteria to make it easier to see why
certain licenses do or don’t qualify.

If you are interested in whether a specific license qualifies as a free software
license, see our list of licenses, at http://gnu.org/licenses/license-list.

html. If the license you are concerned with is not listed there, you can ask us
about it by sending us email at licensing@gnu.org.

If you are contemplating writing a new license, please contact the Free Soft-
ware Foundation first by writing to that address. The proliferation of different
free software licenses means increased work for users in understanding the li-
censes; we may be able to help you find an existing free software license that
meets your needs.

If that isn’t possible, if you really need a new license, with our help you can
ensure that the license really is a free software license and avoid various practical
problems.

Beyond Software

Software manuals must be free, for the same reasons that software must be free,
and because the manuals are in effect part of the software.

The same arguments also make sense for other kinds of works of practical
use—that is to say, works that embody useful knowledge, such as educational
works and reference works. Wikipedia is the best-known example.

Any kind of work can be free, and the definition of free software has been
extended to a definition of free cultural works1 applicable to any kind of works.

1 See http://freedomdefined.org.

http://gnu.org/licenses/license-list.html
http://gnu.org/licenses/license-list.html
mailto:licensing@gnu.org
http://freedomdefined.org

Chapter 2: The GNU Project 7

2 The GNU Project

The First Software-Sharing Community

When I started working at the MIT Artificial Intelligence Lab in 1971, I became
part of a software-sharing community that had existed for many years. Sharing
of software was not limited to our particular community; it is as old as computers,
just as sharing of recipes is as old as cooking. But we did it more than most.

The AI Lab used a timesharing operating system called ITS (the Incompati-
ble Timesharing System) that the lab’s staff hackers1 had designed and written
in assembler language for the Digital PDP-10, one of the large computers of the
era. As a member of this community, an AI Lab staff system hacker, my job
was to improve this system.

We did not call our software “free software,” because that term did not yet
exist; but that is what it was. Whenever people from another university or a
company wanted to port and use a program, we gladly let them. If you saw
someone using an unfamiliar and interesting program, you could always ask to
see the source code, so that you could read it, change it, or cannibalize parts of
it to make a new program.

The Collapse of the Community

The situation changed drastically in the early 1980s when Digital discontinued
the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not
extend naturally to the larger address spaces that were becoming feasible in the
80s. This meant that nearly all of the programs composing ITS were obsolete.

The AI Lab hacker community had already collapsed, not long before. In
1981, the spin-off company Symbolics had hired away nearly all of the hackers
from the AI Lab, and the depopulated community was unable to maintain itself.
(The book Hackers, by Steve Levy, describes these events, as well as giving a
clear picture of this community in its prime.) When the AI Lab bought a new

1 The use of “hacker” to mean “security breaker” is a confusion on the part of the
mass media. We hackers refuse to recognize that meaning, and continue using
the word to mean someone who loves to program, someone who enjoys play-
ful cleverness, or the combination of the two. See my article, “On Hacking,” at
http://stallman.org/articles/on-hacking.html.

Copyright c© 1998, 2001, 2002, 2005, 2006, 2007, 2008, 2010 Richard Stallman
The original version of this essay was published in Open Sources: Voices from

the Open Source Revolution, by Chris DiBona and others (Sebastopol: O’Reilly
Media, 1999), under the title “The GNU Operating System and the Free Software
Movement.” This version is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://stallman.org/articles/on-hacking.html

8 Free Software, Free Society, 2nd ed.

PDP-10 in 1982, its administrators decided to use Digital’s nonfree timesharing
system instead of ITS.

The modern computers of the era, such as the VAX or the 68020, had their
own operating systems, but none of them were free software: you had to sign a
nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help
your neighbor. A cooperating community was forbidden. The rule made by the
owners of proprietary software was, “If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them.”

The idea that the proprietary software social system—the system that says
you are not allowed to share or change software—is antisocial, that it is unethi-
cal, that it is simply wrong, may come as a surprise to some readers. But what
else could we say about a system based on dividing the public and keeping users
helpless? Readers who find the idea surprising may have taken the proprietary
software social system as a given, or judged it on the terms suggested by pro-
prietary software businesses. Software publishers have worked long and hard to
convince people that there is only one way to look at the issue.

When software publishers talk about “enforcing” their “rights” or “stopping
piracy,” what they actually say is secondary. The real message of these state-
ments is in the unstated assumptions they take for granted, which the public is
asked to accept without examination. Let’s therefore examine them.

One assumption is that software companies have an unquestionable natural
right to own software and thus have power over all its users. (If this were a
natural right, then no matter how much harm it does to the public, we could
not object.) Interestingly, the US Constitution and legal tradition reject this
view; copyright is not a natural right, but an artificial government-imposed
monopoly that limits the users’ natural right to copy.

Another unstated assumption is that the only important thing about software
is what jobs it allows you to do—that we computer users should not care what
kind of society we are allowed to have.

A third assumption is that we would have no usable software (or would
never have a program to do this or that particular job) if we did not offer
a company power over the users of the program. This assumption may have
seemed plausible, before the free software movement demonstrated that we can
make plenty of useful software without putting chains on it.

If we decline to accept these assumptions, and judge these issues based on
ordinary commonsense morality while placing the users first, we arrive at very
different conclusions. Computer users should be free to modify programs to fit
their needs, and free to share software, because helping other people is the basis
of society.

There is no room here for an extensive statement of the reasoning behind
this conclusion, so I refer the reader to the article “Why Software Should Not
Have Owners” (p. 37).

Chapter 2: The GNU Project 9

A Stark Moral Choice

With my community gone, to continue as before was impossible. Instead, I faced
a stark moral choice.

The easy choice was to join the proprietary software world, signing nondisclo-
sure agreements and promising not to help my fellow hacker. Most likely I would
also be developing software that was released under nondisclosure agreements,
thus adding to the pressure on other people to betray their fellows too.

I could have made money this way, and perhaps amused myself writing code.
But I knew that at the end of my career, I would look back on years of building
walls to divide people, and feel I had spent my life making the world a worse
place.

I had already experienced being on the receiving end of a nondisclosure agree-
ment, when someone refused to give me and the MIT AI Lab the source code for
the control program for our printer. (The lack of certain features in this program
made use of the printer extremely frustrating.) So I could not tell myself that
nondisclosure agreements were innocent. I was very angry when he refused to
share with us; I could not turn around and do the same thing to everyone else.

Another choice, straightforward but unpleasant, was to leave the computer
field. That way my skills would not be misused, but they would still be wasted.
I would not be culpable for dividing and restricting computer users, but it would
happen nonetheless.

So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to make
a community possible once again?

The answer was clear: what was needed first was an operating system. That
is the crucial software for starting to use a computer. With an operating system,
you can do many things; without one, you cannot run the computer at all.
With a free operating system, we could again have a community of cooperating
hackers—and invite anyone to join. And anyone would be able to use a computer
without starting out by conspiring to deprive his or her friends.

As an operating system developer, I had the right skills for this job. So even
though I could not take success for granted, I realized that I was elected to do
the job. I chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it. The name GNU was
chosen, following a hacker tradition, as a recursive acronym for “GNU’s Not
Unix.”

An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included
command processors, assemblers, compilers, interpreters, debuggers, text edi-
tors, mailers, and much more. ITS had them, Multics had them, VMS had
them, and Unix had them. The GNU operating system would include them too.

Later I heard these words, attributed to Hillel:2

2 As an Atheist, I don’t follow any religious leaders, but I sometimes find I admire
something one of them has said.

10 Free Software, Free Society, 2nd ed.

If I am not for myself, who will be for me?
If I am only for myself, what am I?
If not now, when?

The decision to start the GNU Project was based on a similar spirit.

Free as in Freedom

The term “free software” is sometimes misunderstood—it has nothing to do with
price. It is about freedom. Here, therefore, is the definition of free software.

A program is free software, for you, a particular user, if:

• You have the freedom to run the program as you wish, for any purpose.

• You have the freedom to modify the program to suit your needs. (To
make this freedom effective in practice, you must have access to the source
code, since making changes in a program without having the source code
is exceedingly difficult.)

• You have the freedom to redistribute copies, either gratis or for a fee.

• You have the freedom to distribute modified versions of the program, so
that the community can benefit from your improvements.

Since “free” refers to freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copies is crucial:
collections of free software sold on CD-ROMs are important for the community,
and selling them is an important way to raise funds for free software development.
Therefore, a program which people are not free to include on these collections
is not free software.

Because of the ambiguity of “free,” people have long looked for alternatives,
but no one has found a better term. The English language has more words
and nuances than any other, but it lacks a simple, unambiguous, word that
means “free,” as in freedom—“unfettered” being the word that comes closest in
meaning. Such alternatives as “liberated,” “freedom,” and “open” have either
the wrong meaning or some other disadvantage.

GNU Software and the GNU System

Developing a whole system is a very large project. To bring it into reach, I
decided to adapt and use existing pieces of free software wherever that was
possible. For example, I decided at the very beginning to use TEX as the principal
text formatter; a few years later, I decided to use the X Window System rather
than writing another window system for GNU.

Because of this decision, the GNU system is not the same as the collection
of all GNU software. The GNU system includes programs that are not GNU
software, programs that were developed by other people and projects for their
own purposes, but which we can use because they are free software.

Chapter 2: The GNU Project 11

Commencing the Project

In January 1984 I quit my job at MIT and began writing GNU software. Leaving
MIT was necessary so that MIT would not be able to interfere with distributing
GNU as free software. If I had remained on the staff, MIT could have claimed
to own the work, and could have imposed their own distribution terms, or even
turned the work into a proprietary software package. I had no intention of doing
a large amount of work only to see it become useless for its intended purpose:
creating a new software-sharing community.

However, Professor Winston, then the head of the MIT AI Lab, kindly invited
me to keep using the lab’s facilities.

The First Steps

Shortly before beginning the GNU Project, I heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for “free” is written
with a v.) This was a compiler designed to handle multiple languages, including
C and Pascal, and to support multiple target machines. I wrote to its author
asking if GNU could use it.

He responded derisively, stating that the university was free but the compiler
was not. I therefore decided that my first program for the GNU Project would
be a multilanguage, multiplatform compiler.

Hoping to avoid the need to write the whole compiler myself, I obtained
the source code for the Pastel compiler, which was a multiplatform compiler
developed at Lawrence Livermore Lab. It supported, and was written in, an
extended version of Pascal, designed to be a system-programming language. I
added a C front end, and began porting it to the Motorola 68000 computer.
But I had to give that up when I discovered that the compiler needed many
megabytes of stack space, while the available 68000 Unix system would only
allow 64k.

I then realized that the Pastel compiler functioned by parsing the entire
input file into a syntax tree, converting the whole syntax tree into a chain of
“instructions,” and then generating the whole output file, without ever freeing
any storage. At this point, I concluded I would have to write a new compiler
from scratch. That new compiler is now known as GCC; none of the Pastel
compiler is used in it, but I managed to adapt and use the C front end that I
had written. But that was some years later; first, I worked on GNU Emacs.

GNU Emacs

I began work on GNU Emacs in September 1984, and in early 1985 it was
beginning to be usable. This enabled me to begin using Unix systems to do
editing; having no interest in learning to use vi or ed, I had done my editing on
other kinds of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the
question of how to distribute it. Of course, I put it on the anonymous ftp server
on the MIT computer that I used. (This computer, prep.ai.mit.edu, thus

12 Free Software, Free Society, 2nd ed.

became the principal GNU ftp distribution site; when it was decommissioned a
few years later, we transferred the name to our new ftp server.) But at that
time, many of the interested people were not on the Internet and could not get
a copy by ftp. So the question was, what would I say to them?

I could have said, “Find a friend who is on the net and who will make a copy
for you.” Or I could have done what I did with the original PDP-10 Emacs: tell
them, “Mail me a tape and a SASE (self-addressed stamped envelope), and I
will mail it back with Emacs on it.” But I had no job, and I was looking for ways
to make money from free software. So I announced that I would mail a tape
to whoever wanted one, for a fee of $150. In this way, I started a free software
distribution business, the precursor of the companies that today distribute entire
Linux-based GNU systems.

Is a Program Free for Every User?

If a program is free software when it leaves the hands of its author, this does
not necessarily mean it will be free software for everyone who has a copy of it.
For example, public domain software (software that is not copyrighted) is free
software; but anyone can make a proprietary modified version of it. Likewise,
many free programs are copyrighted but distributed under simple permissive
licenses which allow proprietary modified versions.

The paradigmatic example of this problem is the X Window System. De-
veloped at MIT, and released as free software with a permissive license, it was
soon adopted by various computer companies. They added X to their propri-
etary Unix systems, in binary form only, and covered by the same nondisclosure
agreement. These copies of X were no more free software than Unix was.

The developers of the X Window System did not consider this a problem—
they expected and intended this to happen. Their goal was not freedom, just
“success,” defined as “having many users.” They did not care whether these
users had freedom, only about having many of them.

This led to a paradoxical situation where two different ways of counting
the amount of freedom gave different answers to the question, “Is this program
free?” If you judged based on the freedom provided by the distribution terms of
the MIT release, you would say that X was free software. But if you measured
the freedom of the average user of X, you would have to say it was proprietary
software. Most X users were running the proprietary versions that came with
Unix systems, not the free version.

Copyleft and the GNU GPL

The goal of GNU was to give users freedom, not just to be popular. So we
needed to use distribution terms that would prevent GNU software from being
turned into proprietary software. The method we use is called “copyleft.”3

3 In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a letter.
On the envelope he had written several amusing sayings, including this one:
“Copyleft—all rights reversed.” I used the word “copyleft” to name the distri-
bution concept I was developing at the time.

Chapter 2: The GNU Project 13

Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means for restricting a program, it becomes a means for
keeping the program free.

The central idea of copyleft is that we give everyone permission to run the pro-
gram, copy the program, modify the program, and distribute modified versions—
but not permission to add restrictions of their own. Thus, the crucial freedoms
that define “free software” are guaranteed to everyone who has a copy; they
become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures
that work based on ours becomes available to our community if it is published.
When programmers who have jobs as programmers volunteer to improve GNU
software, it is copyleft that prevents their employers from saying, “You can’t
share those changes, because we are going to use them to make our proprietary
version of the program.”

The requirement that changes must be free is essential if we want to ensure
freedom for every user of the program. The companies that privatized the X
Window System usually made some changes to port it to their systems and
hardware. These changes were small compared with the great extent of X,
but they were not trivial. If making changes were an excuse to deny the users
freedom, it would be easy for anyone to take advantage of the excuse.

A related issue concerns combining a free program with nonfree code. Such
a combination would inevitably be nonfree; whichever freedoms are lacking for
the nonfree part would be lacking for the whole as well. To permit such com-
binations would open a hole big enough to sink a ship. Therefore, a crucial
requirement for copyleft is to plug this hole: anything added to or combined
with a copylefted program must be such that the larger combined version is also
free and copylefted.

The specific implementation of copyleft that we use for most GNU software
is the GNU General Public License, or GNU GPL for short. We have other kinds
of copyleft that are used in specific circumstances. GNU manuals are copylefted
also, but use a much simpler kind of copyleft, because the complexity of the
GNU GPL is not necessary for manuals.4

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the
GNU Project, and we decided that it was time to seek funding once again. So in
1985 we created the Free Software Foundation (FSF), a tax-exempt charity for
free software development. The FSF also took over the Emacs tape distribution
business; later it extended this by adding other free software (both GNU and
non-GNU) to the tape, and by selling free manuals as well.

Most of the FSF’s income used to come from sales of copies of free software
and of other related services (CD-ROMs of source code, CD-ROMs with binaries,
nicely printed manuals, all with the freedom to redistribute and modify), and

4 We now use the GNU Free Documentation License (p. 193) for documentation.

14 Free Software, Free Society, 2nd ed.

Deluxe Distributions (distributions for which we built the whole collection of
software for the customer’s choice of platform). Today the FSF still sells manuals
and other gear, but it gets the bulk of its funding from members’ dues. You can
join the FSF at http://fsf.org/join.

Free Software Foundation employees have written and maintained a number
of GNU software packages. Two notable ones are the C library and the shell.
The GNU C library is what every program running on a GNU/Linux system uses
to communicate with Linux. It was developed by a member of the Free Software
Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems
is BASH, the Bourne Again Shell,5 which was developed by FSF employee Brian
Fox.

We funded development of these programs because the GNU Project was
not just about tools or a development environment. Our goal was a complete
operating system, and these programs were needed for that goal.

Free Software Support

The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users’ freedom, we wish
them success.

Selling copies of Emacs demonstrates one kind of free software business.
When the FSF took over that business, I needed another way to make a liv-
ing. I found it in selling services relating to the free software I had developed.
This included teaching, for subjects such as how to program GNU Emacs and
how to customize GCC, and software development, mostly porting GCC to new
platforms.

Today each of these kinds of free software business is practiced by a number
of corporations. Some distribute free software collections on CD-ROM; others
sell support at levels ranging from answering user questions, to fixing bugs, to
adding major new features. We are even beginning to see free software companies
based on launching new free software products.

Watch out, though—a number of companies that associate themselves with
the term “open source” actually base their business on nonfree software that
works with free software. These are not free software companies, they are pro-
prietary software companies whose products tempt users away from freedom.
They call these programs “value-added packages,” which shows the values they
would like us to adopt: convenience above freedom. If we value freedom more,
we should call them “freedom-subtracted” packages.

5 “Bourne Again Shell” is a play on the name “Bourne Shell,” which was the usual
shell on Unix.

http://fsf.org/join

Chapter 2: The GNU Project 15

Technical Goals

The principal goal of GNU is to be free software. Even if GNU had no tech-
nical advantage over Unix, it would have a social advantage, allowing users to
cooperate, and an ethical advantage, respecting the user’s freedom.

But it was natural to apply the known standards of good practice to the
work—for example, dynamically allocating data structures to avoid arbitrary
fixed size limits, and handling all the possible 8-bit codes wherever that made
sense.

In addition, we rejected the Unix focus on small memory size, by deciding
not to support 16-bit machines (it was clear that 32-bit machines would be the
norm by the time the GNU system was finished), and to make no effort to reduce
memory usage unless it exceeded a megabyte. In programs for which handling
very large files was not crucial, we encouraged programmers to read an entire
input file into core, then scan its contents without having to worry about I/O.

These decisions enabled many GNU programs to surpass their Unix counter-
parts in reliability and speed.

Donated Computers

As the GNU Project’s reputation grew, people began offering to donate machines
running Unix to the project. These were very useful, because the easiest way
to develop components of GNU was to do it on a Unix system, and replace the
components of that system one by one. But they raised an ethical issue: whether
it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU Project’s philosophy
said that we should not use proprietary software. But, applying the same rea-
soning that leads to the conclusion that violence in self defense is justified, I
concluded that it was legitimate to use a proprietary package when that was
crucial for developing a free replacement that would help others stop using the
proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no longer
have any copies of Unix, because we have replaced them with free operating
systems. If we could not replace a machine’s operating system with a free one,
we replaced the machine instead.

The GNU Task List

As the GNU Project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make a list of the re-
maining gaps. We used it to recruit developers to write the missing pieces. This
list became known as the GNU Task List. In addition to missing Unix compo-
nents, we listed various other useful software and documentation projects that,
we thought, a truly complete system ought to have.

16 Free Software, Free Society, 2nd ed.

Today,6 hardly any Unix components are left in the GNU Task List—those
jobs had been done, aside from a few inessential ones. But the list is full of
projects that some might call “applications.” Any program that appeals to
more than a narrow class of users would be a useful thing to add to an operating
system.

Even games are included in the task list—and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not
an issue for games, so we did not follow the list of games that Unix had. Instead,
we listed a spectrum of different kinds of games that users might like.

The GNU Library GPL

The GNU C library uses a special kind of copyleft called the GNU Library
General Public License,7 which gives permission to link proprietary software
with the library. Why make this exception?

It is not a matter of principle; there is no principle that says proprietary
software products are entitled to include our code. (Why contribute to a project
predicated on refusing to share with us?) Using the LGPL for the C library, or
for any library, is a matter of strategy.

The C library does a generic job; every proprietary system or compiler comes
with a C library. Therefore, to make our C library available only to free soft-
ware would not have given free software any advantage—it would only have
discouraged use of our library.

One system is an exception to this: on the GNU system (and this includes
GNU/Linux), the GNU C library is the only C library. So the distribution terms
of the GNU C library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that disallowing
them would do more to discourage use of the GNU system than to encourage
development of free applications. That is why using the Library GPL is a good
strategy for the C library.

For other libraries, the strategic decision needs to be considered on a case-by-
case basis. When a library does a special job that can help write certain kinds of
programs, then releasing it under the GPL, limiting it to free programs only, is a
way of helping other free software developers, giving them an advantage against
proprietary software.

Consider GNU Readline, a library that was developed to provide command-
line editing for BASH. Readline is released under the ordinary GNU GPL, not
the Library GPL. This probably does reduce the amount Readline is used, but
that is no loss for us. Meanwhile, at least one useful application has been made

6 That was written in 1998. In 2009 we no longer maintain a long task list. The
community develops free software so fast that we can’t even keep track of it all.
Instead, we have a list of High Priority Projects, a much shorter list of projects
we really want to encourage people to write.

7 This license is now called the GNU Lesser General Public License, to avoid giv-
ing the idea that all libraries ought to use it.

Chapter 2: The GNU Project 17

free software specifically so it could use Readline, and that is a real gain for the
community.

Proprietary software developers have the advantages money provides; free
software developers need to make advantages for each other. I hope some day
we will have a large collection of GPL-covered libraries that have no parallel
available to proprietary software, providing useful modules to serve as building
blocks in new free software, and adding up to a major advantage for further free
software development.

Scratching an Itch?

Eric Raymond8 says that “Every good work of software starts by scratching a
developer’s personal itch.”9 Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free operating
system. They come from a vision and a plan, not from impulse.

For example, we developed the GNU C library because a Unix-like system
needs a C library, BASH because a Unix-like system needs a shell, and GNU tar
because a Unix-like system needs a tar program. The same is true for my own
programs—the GNU C compiler, GNU Emacs, GDB and GNU Make.

Some GNU programs were developed to cope with specific threats to our
freedom. Thus, we developed gzip to replace the Compress program, which had
been lost to the community because of the LZW patents. We found people to
develop LessTif, and more recently started GNOME and Harmony, to address
the problems caused by certain proprietary libraries (see below). We are devel-
oping the GNU Privacy Guard to replace popular nonfree encryption software,
because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work,
and many features were added to them by various people for the sake of their
own needs and interests. But that is not why the programs exist.

Unexpected Developments

At the beginning of the GNU Project, I imagined that we would develop the
whole GNU system, then release it as a whole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix sys-
tem, each component could run on Unix systems long before a complete GNU
system existed. Some of these programs became popular, and users began ex-
tending them and porting them—to the various incompatible versions of Unix,
and sometimes to other systems as well.

The process made these programs much more powerful, and attracted both
funds and contributors to the GNU Project. But it probably also delayed com-
pletion of a minimal working system by several years, as GNU developers’ time

8 Eric Raymond is a prominent open source advocate; see “Why Open Source
Misses the Point” (p. 83).

9 Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, rev. ed. (Sebastopol, Calif.: O’Reilly,
2001), p. 23.

18 Free Software, Free Society, 2nd ed.

was put into maintaining these ports and adding features to the existing com-
ponents, rather than moving on to write one missing component after another.

The GNU Hurd

By 1990, the GNU system was almost complete; the only major missing com-
ponent was the kernel. We had decided to implement our kernel as a collection
of server processes running on top of Mach. Mach is a microkernel developed at
Carnegie Mellon University and then at the University of Utah; the GNU Hurd
is a collection of servers (i.e., a herd of GNUs) that run on top of Mach, and do
the various jobs of the Unix kernel. The start of development was delayed as we
waited for Mach to be released as free software, as had been promised.

One reason for choosing this design was to avoid what seemed to be the
hardest part of the job: debugging a kernel program without a source-level
debugger to do it with. This part of the job had been done already, in Mach,
and we expected to debug the Hurd servers as user programs, with GDB. But
it took a long time to make that possible, and the multithreaded servers that
send messages to each other have turned out to be very hard to debug. Making
the Hurd work solidly has stretched on for many years.

Alix

The GNU kernel was not originally supposed to be called the Hurd. Its original
name was Alix—named after the woman who was my sweetheart at the time.
She, a Unix system administrator, had pointed out how her name would fit
a common naming pattern for Unix system versions; as a joke, she told her
friends, “Someone should name a kernel after me.” I said nothing, but decided
to surprise her with a kernel named Alix.

It did not stay that way. Michael (now Thomas) Bushnell, the main developer
of the kernel, preferred the name Hurd, and redefined Alix to refer to a certain
part of the kernel—the part that would trap system calls and handle them by
sending messages to Hurd servers.

Later, Alix and I broke up, and she changed her name; independently, the
Hurd design was changed so that the C library would send messages directly to
servers, and this made the Alix component disappear from the design.

But before these things happened, a friend of hers came across the name Alix
in the Hurd source code, and mentioned it to her. So she did have the chance
to find a kernel named after her.

Chapter 2: The GNU Project 19

Linux and GNU/Linux

The GNU Hurd is not suitable for production use, and we don’t know if it ever
will be. The capability-based design has problems that result directly from the
flexibility of the design, and it is not clear solutions exist.

Fortunately, another kernel is available. In 1991, Linus Torvalds developed
a Unix-compatible kernel and called it Linux. In 1992, he made Linux free
software; combining Linux with the not-quite-complete GNU system resulted in
a complete free operating system. (Combining them was a substantial job in
itself, of course.) It is due to Linux that we can actually run a version of the
GNU system today.

We call this system version GNU/Linux, to express its composition as a
combination of the GNU system with Linux as the kernel.

Challenges in Our Future

We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not let anyone take
it away.

The following four sections discuss these challenges.

Secret Hardware

Hardware manufacturers increasingly tend to keep hardware specifications se-
cret. This makes it difficult to write free drivers so that Linux and XFree86 can
support new hardware. We have complete free systems today, but we will not
have them tomorrow if we cannot support tomorrow’s computers.

There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy
of specifications will become a self-defeating policy.

Reverse engineering is a big job; will we have programmers with sufficient
determination to undertake it? Yes—if we have built up a strong feeling that
free software is a matter of principle, and nonfree drivers are intolerable. And
will large numbers of us spend extra money, or even a little extra time, so we
can use free drivers? Yes, if the determination to have freedom is widespread.

[2008 note: this issue extends to the BIOS as well. There is a free BIOS,
coreboot; the problem is getting specs for machines so that coreboot can support
them.]

20 Free Software, Free Society, 2nd ed.

Nonfree Libraries

A nonfree library that runs on free operating systems acts as a trap for free
software developers. The library’s attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of
a free operating system. (Strictly speaking, we could include your program, but
it won’t run with the library missing.) Even worse, if a program that uses the
proprietary library becomes popular, it can lure other unsuspecting programmers
into the trap.

The first instance of this problem was the Motif toolkit, back in the 80s.
Although there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways:
by asking individual free software projects to support the free X Toolkit widgets
as well as Motif, and by asking for someone to write a free replacement for Mo-
tif. The job took many years; LessTif, developed by the Hungry Programmers,
became powerful enough to support most Motif applications only in 1997.

Between 1996 and 1998, another nonfree GUI toolkit library, called Qt, was
used in a substantial collection of free software, the desktop KDE.

Free GNU/Linux systems were unable to use KDE, because we could not use
the library. However, some commercial distributors of GNU/Linux systems who
were not strict about sticking with free software added KDE to their systems—
producing a system with more capabilities, but less freedom. The KDE group
was actively encouraging more programmers to use Qt, and millions of new
“Linux users” had never been exposed to the idea that there was a problem in
this. The situation appeared grim.

The free software community responded to the problem in two ways:
GNOME and Harmony.

GNOME, the GNU Network Object Model Environment, is GNU’s desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support
of Red Hat Software, GNOME set out to provide similar desktop facilities, but
using free software exclusively. It has technical advantages as well, such as
supporting a variety of languages, not just C++. But its main purpose was
freedom: not to require the use of any nonfree software.

Harmony is a compatible replacement library, designed to make it possible
to run KDE software without using Qt.

In November 1998, the developers of Qt announced a change of license which,
when carried out, should make Qt free software. There is no way to be sure,
but I think that this was partly due to the community’s firm response to the
problem that Qt posed when it was nonfree. (The new license is inconvenient
and inequitable, so it remains desirable to avoid using Qt.)

[Subsequent note: in September 2000, Qt was rereleased under the GNU
GPL, which essentially solved this problem.]

How will we respond to the next tempting nonfree library? Will the whole
community understand the need to stay out of the trap? Or will many of us give
up freedom for convenience, and produce a major problem? Our future depends
on our philosophy.

Chapter 2: The GNU Project 21

Software Patents

The worst threat we face comes from software patents, which can put algorithms
and features off limits to free software for up to 20 years. The LZW compression
algorithm patents were applied for in 1983, and we still cannot release free
software to produce proper compressed GIFs. [As of 2009 they have expired.]
In 1998, a free program to produce MP3 compressed audio was removed from
distribution under threat of a patent suit.

There are ways to cope with patents: we can search for evidence that a
patent is invalid, and we can look for alternative ways to do a job. But each
of these methods works only sometimes; when both fail, a patent may force all
free software to lack some feature that users want. What will we do when this
happens?

Those of us who value free software for freedom’s sake will stay with free
software anyway. We will manage to get work done without the patented fea-
tures. But those who value free software because they expect it to be technically
superior are likely to call it a failure when a patent holds it back. Thus, while
it is useful to talk about the practical effectiveness of the “bazaar” model of
development, and the reliability and power of some free software, we must not
stop there. We must talk about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systems is not in the software—it is
the lack of good free manuals that we can include in our systems. Documentation
is an essential part of any software package; when an important free software
package does not come with a good free manual, that is a major gap. We have
many such gaps today.

Free documentation, like free software, is a matter of freedom, not price.
The criterion for a free manual is pretty much the same as for free software:
it is a matter of giving all users certain freedoms. Redistribution (including
commercial sale) must be permitted, online and on paper, so that the manual
can accompany every copy of the program.

Permission for modification is crucial too. As a general rule, I don’t believe
that it is essential for people to have permission to modify all sorts of articles
and books. For example, I don’t think you or I are obliged to give permission
to modify articles like this one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify the
software, and add or change its features, if they are conscientious they will change
the manual, too—so they can provide accurate and usable documentation with
the modified program. A nonfree manual, which does not allow programmers to
be conscientious and finish the job, does not fill our community’s needs.

Some kinds of limits on how modifications are done pose no problem. For
example, requirements to preserve the original author’s copyright notice, the
distribution terms, or the list of authors, are OK. It is also no problem to require
modified versions to include notice that they were modified, even to have entire

22 Free Software, Free Society, 2nd ed.

sections that may not be deleted or changed, as long as these sections deal with
nontechnical topics. These kinds of restrictions are not a problem because they
don’t stop the conscientious programmer from adapting the manual to fit the
modified program. In other words, they don’t block the free software community
from making full use of the manual.

However, it must be possible to modify all the technical content of the man-
ual, and then distribute the result in all the usual media, through all the usual
channels; otherwise, the restrictions do obstruct the community, the manual is
not free, and we need another manual.

Will free software developers have the awareness and determination to pro-
duce a full spectrum of free manuals? Once again, our future depends on phi-
losophy.

We Must Talk about Freedom

Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat “Linux.” Free software has developed such
practical advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to en-
courage companies to develop commercial free software instead of proprietary
software products.

But interest in the software is growing faster than awareness of the philosophy
it is based on, and this leads to trouble. Our ability to meet the challenges and
threats described above depends on the will to stand firm for freedom. To make
sure our community has this will, we need to spread the idea to the new users
as they come into the community.

But we are failing to do so: the efforts to attract new users into our commu-
nity are far outstripping the efforts to teach them the civics of our community.
We need to do both, and we need to keep the two efforts in balance.

“Open Source”

Teaching new users about freedom became more difficult in 1998, when a part
of the community decided to stop using the term “free software” and say “open
source software” instead.

Some who favored this term aimed to avoid the confusion of “free” with
“gratis”—a valid goal. Others, however, aimed to set aside the spirit of principle
that had motivated the free software movement and the GNU Project, and to
appeal instead to executives and business users, many of whom hold an ideology
that places profit above freedom, above community, above principle. Thus, the
rhetoric of “open source” focuses on the potential to make high-quality, powerful
software, but shuns the ideas of freedom, community, and principle.

The “Linux” magazines are a clear example of this—they are filled with
advertisements for proprietary software that works with GNU/Linux. When the
next Motif or Qt appears, will these magazines warn programmers to stay away
from it, or will they run ads for it?

Chapter 2: The GNU Project 23

The support of business can contribute to the community in many ways; all
else being equal, it is useful. But winning their support by speaking even less
about freedom and principle can be disastrous; it makes the previous imbalance
between outreach and civics education even worse.

“Free software” and “open source” describe the same category of software,
more or less, but say different things about the software, and about values. The
GNU Project continues to use the term “free software,” to express the idea that
freedom, not just technology, is important.

Try!

Yoda’s aphorism (“There is no ‘try’ ”) sounds neat, but it doesn’t work for me. I
have done most of my work while anxious about whether I could do the job, and
unsure that it would be enough to achieve the goal if I did. But I tried anyway,
because there was no one but me between the enemy and my city. Surprising
myself, I have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I found another
threatened city, and got ready for another battle. Over time, I’ve learned to
look for threats and put myself between them and my city, calling on other
hackers to come and join me.

Nowadays, often I’m not the only one. It is a relief and a joy when I see
a regiment of hackers digging in to hold the line, and I realize, this city may
survive—for now. But the dangers are greater each year, and now Microsoft
has explicitly targeted our community. We can’t take the future of freedom for
granted. Don’t take it for granted! If you want to keep your freedom, you must
be prepared to defend it.

Chapter 3: The Initial Announcement of the GNU Operating System 25

3 The Initial Announcement of the

GNU Operating System

This is the original announcement of the GNU Project, posted by Richard Stall-
man on 27 September 1983.

The actual history of the GNU Project differs in many ways from this initial
plan. For example, the beginning was delayed until January 1984. Several of
the philosophical concepts of free software were not clarified until a few years
later.

From mit-vax!mit-eddie!RMS@MIT-OZ

From: RMS%MIT-OZ@mit-eddie

Newsgroups: net.unix-wizards,net.usoft

Subject: new Unix implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Organization: MIT AI Lab, Cambridge, MA

Free Unix!

Starting this Thanksgiving I am going to write a complete Unix-compatible

software system called GNU (for Gnu’s Not Unix), and give it away free1

to everyone who can use it. Contributions of time, money, programs and

equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write

and run C programs: editor, shell, C compiler, linker, assembler, and a few

other things. After this we will add a text formatter, a YACC, an Empire

game, a spreadsheet, and hundreds of other things. We hope to supply,

eventually, everything useful that normally comes with a Unix system, and

anything else useful, including on-line and hardcopy documentation.

GNU will be able to run Unix programs, but will not be identical to Unix. We

will make all improvements that are convenient, based on our experience with

other operating systems. In particular, we plan to have longer filenames,

file version numbers, a crashproof file system, filename completion perhaps,

terminal-independent display support, and eventually a Lisp-based window

system through which several Lisp programs and ordinary Unix programs can

share a screen. Both C and Lisp will be available as system programming

languages. We will have network software based on MIT’s chaosnet protocol,

far superior to UUCP. We may also have something compatible with UUCP.

1 The wording here was careless. The intention was that nobody would have to
pay for permission to use the GNU system. But the words don’t make this clear,
and people often interpret them as saying that copies of GNU should always be
distributed at little or no charge. That was never the intent.

Copyright c© 1983 Richard Stallman
This announcement is part of Free Software, Free Society: Selected Essays of

Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

26 Free Software, Free Society, 2nd ed.

Who Am I?

I am Richard Stallman, inventor of the original much-imitated EMACS editor,

now at the Artificial Intelligence Lab at MIT. I have worked extensively

on compilers, editors, debuggers, command interpreters, the Incompatible

Timesharing System and the Lisp Machine operating system. I pioneered

terminal-independent display support in ITS. In addition I have implemented

one crashproof file system and two window systems for Lisp machines.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must

share it with other people who like it. I cannot in good conscience sign a

nondisclosure agreement or a software license agreement.

So that I can continue to use computers without violating my principles, I

have decided to put together a sufficient body of free software so that I

will be able to get along without any software that is not free.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m

asking individuals for donations of programs and work.

One computer manufacturer has already offered to provide a machine. But we

could use more. One consequence you can expect if you donate machines is

that GNU will run on them at an early date. The machine had better be able

to operate in a residential area, and not require sophisticated cooling or

power.

Individual programmers can contribute by writing a compatible duplicate

of some Unix utility and giving it to me. For most projects, such part-time

distributed work would be very hard to coordinate; the independently-written

parts would not work together. But for the particular task of replacing

Unix, this problem is absent. Most interface specifications are fixed by

Unix compatibility. If each contribution works with the rest of Unix, it

will probably work with the rest of GNU.

If I get donations of money, I may be able to hire a few people full or part

time. The salary won’t be high, but I’m looking for people for whom knowing

they are helping humanity is as important as money. I view this as a way of

enabling dedicated people to devote their full energies to working on GNU by

sparing them the need to make a living in another way.

For more information, contact me.

Arpanet mail:

RMS@MIT-MC.ARPA

Usenet:

...!mit-eddie!RMS@OZ ...!mit-vax!RMS@OZ

US Snail:

Richard Stallman

166 Prospect St

Cambridge, MA 02139

Chapter 4: The GNU Manifesto 27

4 The GNU Manifesto

The GNU Manifesto was written by Richard Stallman at the beginning of
the GNU Project, to ask for participation and support. For the first few
years, it was updated in minor ways to account for developments, but now
it seems best to leave it unchanged as most people have seen it.

Since that time, we have learned about certain common misunderstand-
ings that different wording could help avoid. Footnotes added since 1993
help clarify these points.

For up-to-date information about the available GNU software, please
see the information available on our web server, in particular our list of
software. For how to contribute, see http://gnu.org/help.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-
compatible software system which I am writing so that I can give it away free to
everyone who can use it.1 Several other volunteers are helping me. Contributions
of time, money, programs and equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a
source level debugger, a yacc-compatible parser generator, a linker, and around
35 utilities. A shell (command interpreter) is nearly completed. A new portable
optimizing C compiler has compiled itself and may be released this year. An
initial kernel exists but many more features are needed to emulate Unix. When
the kernel and compiler are finished, it will be possible to distribute a GNU
system suitable for program development. We will use TEX as our text formatter,
but an nroff is being worked on. We will use the free, portable X window system
as well. After this we will add a portable Common Lisp, an Empire game, a
spreadsheet, and hundreds of other things, plus online documentation. We hope

1 The wording here was careless. The intention was that nobody would have to
pay for permission to use the GNU system. But the words don’t make this clear,
and people often interpret them as saying that copies of GNU should always be
distributed at little or no charge. That was never the intent; later on, the man-
ifesto mentions the possibility of companies providing the service of distribution
for a profit. Subsequently I have learned to distinguish carefully between “free”
in the sense of freedom and “free” in the sense of price. Free software is software
that users have the freedom to distribute and change. Some users may obtain
copies at no charge, while others pay to obtain copies—and if the funds help sup-
port improving the software, so much the better. The important thing is that
everyone who has a copy has the freedom to cooperate with others in using it.

Copyright c© 1985, 1993, 2003, 2005, 2007, 2008, 2009, 2010 Free Software
Foundation, Inc.

“The GNU Manifesto” was originally published in Dr. Dobb’s Journal, vol. 10,
n. 3 (March 1985). This footnoted version is part of Free Software, Free Society:
Selected Essays of Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/help

28 Free Software, Free Society, 2nd ed.

to supply, eventually, everything useful that normally comes with a Unix system,
and more.

GNU will be able to run Unix programs, but will not be identical to Unix.
We will make all improvements that are convenient, based on our experience
with other operating systems. In particular, we plan to have longer file names,
file version numbers, a crashproof file system, file name completion perhaps,
terminal-independent display support, and perhaps eventually a Lisp-based win-
dow system through which several Lisp programs and ordinary Unix programs
can share a screen. Both C and Lisp will be available as system programming
languages. We will try to support UUCP, MIT Chaosnet, and Internet protocols
for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual
memory, because they are the easiest machines to make it run on. The extra
effort to make it run on smaller machines will be left to someone who wants to
use it on them.

To avoid horrible confusion, please pronounce the g in the word “GNU” when
it is the name of this project.

Why I Must Write GNU

I consider that the Golden Rule requires that if I like a program I must share
it with other people who like it. Software sellers want to divide the users and
conquer them, making each user agree not to share with others. I refuse to break
solidarity with other users in this way. I cannot in good conscience sign a nondis-
closure agreement or a software license agreement. For years I worked within
the Artificial Intelligence Lab to resist such tendencies and other inhospitalities,
but eventually they had gone too far: I could not remain in an institution where
such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to
put together a sufficient body of free software so that I will be able to get along
without any software that is not free. I have resigned from the AI Lab to deny
MIT any legal excuse to prevent me from giving GNU away.2

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix
seem to be good ones, and I think I can fill in what Unix lacks without spoiling
them. And a system compatible with Unix would be convenient for many other
people to adopt.

2 The expression “give away” is another indication that I had not yet clearly sepa-
rated the issue of price from that of freedom. We now recommend avoiding this
expression when talking about free software. See “Words to Avoid (or Use with
Care)” (p. 93) for more explanation.

Chapter 4: The GNU Manifesto 29

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and
redistribute GNU, but no distributor will be allowed to restrict its further redis-
tribution. That is to say, proprietary modifications will not be allowed. I want
to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to
help. Many programmers are unhappy about the commercialization of system
software. It may enable them to make more money, but it requires them to feel
in conflict with other programmers in general rather than feel as comrades. The
fundamental act of friendship among programmers is the sharing of programs;
marketing arrangements now typically used essentially forbid programmers to
treat others as friends. The purchaser of software must choose between friendship
and obeying the law. Naturally, many decide that friendship is more important.
But those who believe in law often do not feel at ease with either choice. They
become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can
be hospitable to everyone and obey the law. In addition, GNU serves as an
example to inspire and a banner to rally others to join us in sharing. This can
give us a feeling of harmony which is impossible if we use software that is not
free. For about half the programmers I talk to, this is an important happiness
that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m
asking individuals for donations of programs and work.3

One consequence you can expect if you donate machines is that GNU will
run on them at an early date. The machines should be complete, ready to use
systems, approved for use in a residential area, and not in need of sophisticated
cooling or power.

I have found very many programmers eager to contribute part-time work for
GNU. For most projects, such part-time distributed work would be very hard
to coordinate; the independently written parts would not work together. But
for the particular task of replacing Unix, this problem is absent. A complete
Unix system contains hundreds of utility programs, each of which is documented
separately. Most interface specifications are fixed by Unix compatibility. If each
contributor can write a compatible replacement for a single Unix utility, and
make it work properly in place of the original on a Unix system, then these

3 Nowadays, for software tasks to work on, see the High Priority Projects list, at
http://fsf.org/campaigns/priority-projects/, and the GNU Help Wanted
list, the general task list for GNU software packages, at http://savannah.gnu.
org/people/?type_id=1. For other ways to help, see http://gnu.org/help/

help.html.

http://fsf.org/campaigns/priority-projects/
http://savannah.gnu.org/people/?type_id=1
http://savannah.gnu.org/people/?type_id=1
http://gnu.org/help/help.html
http://gnu.org/help/help.html

30 Free Software, Free Society, 2nd ed.

utilities will work right when put together. Even allowing for Murphy to create
a few unexpected problems, assembling these components will be a feasible task.
(The kernel will require closer communication and will be worked on by a small,
tight group.)

If I get donations of money, I may be able to hire a few people full or part
time. The salary won’t be high by programmers’ standards, but I’m looking for
people for whom building community spirit is as important as making money. I
view this as a way of enabling dedicated people to devote their full energies to
working on GNU by sparing them the need to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free,
just like air.4

This means much more than just saving everyone the price of a Unix license.
It means that much wasteful duplication of system programming effort will be
avoided. This effort can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user
who needs changes in the system will always be free to make them himself, or
hire any available programmer or company to make them for him. Users will no
longer be at the mercy of one programmer or company which owns the sources
and is in sole position to make changes.

Schools will be able to provide a much more educational environment by
encouraging all students to study and improve the system code. Harvard’s com-
puter lab used to have the policy that no program could be installed on the
system if its sources were not on public display, and upheld it by actually refus-
ing to install certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and what
one is or is not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing
of copies, always incur a tremendous cost to society through the cumbersome
mechanisms necessary to figure out how much (that is, which programs) a person
must pay for. And only a police state can force everyone to obey them. Consider
a space station where air must be manufactured at great cost: charging each
breather per liter of air may be fair, but wearing the metered gas mask all day
and all night is intolerable even if everyone can afford to pay the air bill. And
the TV cameras everywhere to see if you ever take the mask off are outrageous.
It’s better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing,
and as productive. It ought to be as free.

4 This is another place I failed to distinguish carefully between the two different
meanings of “free.” The statement as it stands is not false—you can get copies of
GNU software at no charge, from your friends or over the net. But it does sug-
gest the wrong idea.

Chapter 4: The GNU Manifesto 31

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any
support.”
“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without
service, a company to provide just service to people who have obtained GNU
free ought to be profitable.5

We must distinguish between support in the form of real programming work
and mere handholding. The former is something one cannot rely on from a
software vendor. If your problem is not shared by enough people, the vendor
will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have
all the necessary sources and tools. Then you can hire any available person to fix
your problem; you are not at the mercy of any individual. With Unix, the price
of sources puts this out of consideration for most businesses. With GNU this
will be easy. It is still possible for there to be no available competent person,
but this problem cannot be blamed on distribution arrangements. GNU does
not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding:
doing things for them which they could easily do themselves but don’t know
how.

Such services could be provided by companies that sell just handholding and
repair service. If it is true that users would rather spend money and get a
product with service, they will also be willing to buy the service having got the
product free. The service companies will compete in quality and price; users will
not be tied to any particular one. Meanwhile, those of us who don’t need the
service should be able to use the program without paying for the service.

“You cannot reach many people without advertising, and you must charge for
the program to support that.”
“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to
inform numbers of computer users about something like GNU. But it may be
true that one can reach more microcomputer users with advertising. If this is
really so, a business which advertises the service of copying and mailing GNU
for a fee ought to be successful enough to pay for its advertising and more. This
way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such
companies don’t succeed, this will show that advertising was not really necessary
to spread GNU. Why is it that free market advocates don’t want to let the free
market decide this?6

5 Several such companies now exist.
6 Although it is a charity rather than a company, the Free Software Foundation

for 10 years raised most of its funds from its distribution service. You can order
things from the FSF to support its work.

32 Free Software, Free Society, 2nd ed.

“My company needs a proprietary operating system to get a competitive edge.”
GNU will remove operating system software from the realm of competition.

You will not be able to get an edge in this area, but neither will your competitors
be able to get an edge over you. You and they will compete in other areas, while
benefiting mutually in this one. If your business is selling an operating system,
you will not like GNU, but that’s tough on you. If your business is something
else, GNU can save you from being pushed into the expensive business of selling
operating systems.

I would like to see GNU development supported by gifts from many manu-
facturers and users, reducing the cost to each.7

“Don’t programmers deserve a reward for their creativity?”
If anything deserves a reward, it is social contribution. Creativity can be

a social contribution, but only in so far as society is free to use the results. If
programmers deserve to be rewarded for creating innovative programs, by the
same token they deserve to be punished if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”
There is nothing wrong with wanting pay for work, or seeking to maximize

one’s income, as long as one does not use means that are destructive. But the
means customary in the field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is
destructive because the restrictions reduce the amount and the ways that the
program can be used. This reduces the amount of wealth that humanity derives
from the program. When there is a deliberate choice to restrict, the harmful
consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become
wealthier is that, if everyone did so, we would all become poorer from the mutual
destructiveness. This is Kantian ethics; or, the Golden Rule. Since I do not like
the consequences that result if everyone hoards information, I am required to
consider it wrong for one to do so. Specifically, the desire to be rewarded for
one’s creativity does not justify depriving the world in general of all or part of
that creativity.

“Won’t programmers starve?”
I could answer that nobody is forced to be a programmer. Most of us cannot

manage to get any money for standing on the street and making faces. But we
are not, as a result, condemned to spend our lives standing on the street making
faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner’s implicit
assumption: that without ownership of software, programmers cannot possibly
be paid a cent. Supposedly it is all or nothing.

7 A group of computer companies pooled funds around 1991 to support mainte-
nance of the GNU C Compiler.

Chapter 4: The GNU Manifesto 33

The real reason programmers will not starve is that it will still be possible
for them to get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the
most common basis8 because it brings in the most money. If it were prohibited,
or rejected by the customer, software business would move to other bases of
organization which are now used less often. There are always numerous ways to
organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now.
But that is not an argument against the change. It is not considered an injustice
that sales clerks make the salaries that they now do. If programmers made the
same, that would not be an injustice either. (In practice they would still make
considerably more than that.)

“Don’t people have a right to control how their creativity is used?”
“Control over the use of one’s ideas” really constitutes control over other

people’s lives; and it is usually used to make their lives more difficult.
People who have studied the issue of intellectual property rights9 carefully

(such as lawyers) say that there is no intrinsic right to intellectual property. The
kinds of supposed intellectual property rights that the government recognizes
were created by specific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to
disclose the details of their inventions. Its purpose was to help society rather
than to help inventors. At the time, the life span of 17 years for a patent was
short compared with the rate of advance of the state of the art. Since patents
are an issue only among manufacturers, for whom the cost and effort of a license
agreement are small compared with setting up production, the patents often do
not do much harm. They do not obstruct most individuals who use patented
products.

The idea of copyright did not exist in ancient times, when authors frequently
copied other authors at length in works of nonfiction. This practice was useful,

8 I think I was mistaken in saying that proprietary software was the most common
basis for making money in software. It seems that actually the most common
business model was and is development of custom software. That does not offer
the possibility of collecting rents, so the business has to keep doing real work in
order to keep getting income. The custom software business would continue to
exist, more or less unchanged, in a free software world. Therefore, I no longer
expect that most paid programmers would earn less in a free software world.

9 In the 1980s I had not yet realized how confusing it was to speak of “the issue”
of “intellectual property.” That term is obviously biased; more subtle is the fact
that it lumps together various disparate laws which raise very different issues.
Nowadays I urge people to reject the term “intellectual property” entirely, lest it
lead others to suppose that those laws form one coherent issue. The way to be
clear is to discuss patents, copyrights, and trademarks separately. See “Did You
Say ‘Intellectual Property’? It’s a Seductive Mirage” (p. 89) for further explana-
tion of how this term spreads confusion and bias.

34 Free Software, Free Society, 2nd ed.

and is the only way many authors’ works have survived even in part. The copy-
right system was created expressly for the purpose of encouraging authorship.
In the domain for which it was invented—books, which could be copied econom-
ically only on a printing press—it did little harm, and did not obstruct most of
the individuals who read the books.

All intellectual property rights are just licenses granted by society because
it was thought, rightly or wrongly, that society as a whole would benefit by
granting them. But in any particular situation, we have to ask: are we really
better off granting such license? What kind of act are we licensing a person to
do?

The case of programs today is very different from that of books a hundred
years ago. The fact that the easiest way to copy a program is from one neighbor
to another, the fact that a program has both source code and object code which
are distinct, and the fact that a program is used rather than read and enjoyed,
combine to create a situation in which a person who enforces a copyright is
harming society as a whole both materially and spiritually; in which a person
should not do so regardless of whether the law enables him to.

“Competition makes things get done better.”
The paradigm of competition is a race: by rewarding the winner, we encour-

age everyone to run faster. When capitalism really works this way, it does a
good job; but its defenders are wrong in assuming it always works this way. If
the runners forget why the reward is offered and become intent on winning, no
matter how, they may find other strategies—such as, attacking other runners.
If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist
fight. Sad to say, the only referee we’ve got does not seem to object to fights;
he just regulates them (“For every ten yards you run, you can fire one shot”).
He really ought to break them up, and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”
Actually, many people will program with absolutely no monetary incentive.

Programming has an irresistible fascination for some people, usually the people
who are best at it. There is no shortage of professional musicians who keep at
it even though they have no hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the
situation. Pay for programmers will not disappear, only become less. So the
right question is, will anyone program with a reduced monetary incentive? My
experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the
Artificial Intelligence Lab for far less money than they could have had anywhere
else. They got many kinds of nonmonetary rewards: fame and appreciation, for
example. And creativity is also fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting
work for a lot of money.

Chapter 4: The GNU Manifesto 35

What the facts show is that people will program for reasons other than riches;
but if given a chance to make a lot of money as well, they will come to expect and
demand it. Low-paying organizations do poorly in competition with high-paying
ones, but they do not have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping
our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Re-
member: millions for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”
In the short run, this is true. However, there are plenty of ways that pro-

grammers could make a living without selling the right to use a program. This
way is customary now because it brings programmers and businessmen the most
money, not because it is the only way to make a living. It is easy to find other
ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of op-
erating systems onto the new hardware.

The sale of teaching, handholding and maintenance services could also em-
ploy programmers.

People with new ideas could distribute programs as freeware,10 asking for
donations from satisfied users, or selling handholding services. I have met people
who are already working this way successfully.

Users with related needs can form users’ groups, and pay dues. A group
would contract with programming companies to write programs that the group’s
members would like to use.

All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay x percent of the price as

a software tax. The government gives this to an agency like the NSF to spend
on software development.

But if the computer buyer makes a donation to software development himself,
he can take a credit against the tax. He can donate to the project of his own
choosing—often, chosen because he hopes to use the results when it is done. He
can take a credit for any amount of donation up to the total tax he had to pay.

The total tax rate could be decided by a vote of the payers of the tax,
weighted according to the amount they will be taxed on.

The consequences:

• The computer-using community supports software development.

• This community decides what level of support is needed.

• Users who care which projects their share is spent on can choose this for
themselves.

10 Subsequently we learned to distinguish between “free software” and “freeware.”
The term “freeware” means software you are free to redistribute, but usually you
are not free to study and change the source code, so most of it is not free soft-
ware. See “Words to Avoid (or Use with Care)” (p. 93) for more explanation.

36 Free Software, Free Society, 2nd ed.

In the long run, making programs free is a step toward the postscarcity world,
where nobody will have to work very hard just to make a living. People will be
free to devote themselves to activities that are fun, such as programming, after
spending the necessary ten hours a week on required tasks such as legislation,
family counseling, robot repair and asteroid prospecting. There will be no need
to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole soci-
ety must do for its actual productivity, but only a little of this has translated
itself into leisure for workers because much nonproductive activity is required
to accompany productive activity. The main causes of this are bureaucracy and
isometric struggles against competition. Free software will greatly reduce these
drains in the area of software production. We must do this, in order for technical
gains in productivity to translate into less work for us.

Chapter 5: Why Software Should Not Have Owners 37

5 Why Software Should Not Have Owners

Digital information technology contributes to the world by making it easier to
copy and modify information. Computers promise to make this easier for all of
us.

Not everyone wants it to be easier. The system of copyright gives software
programs “owners,” most of whom aim to withhold software’s potential benefit
from the rest of the public. They would like to be the only ones who can copy
and modify the software that we use.

The copyright system grew up with printing—a technology for mass-
production copying. Copyright fit in well with this technology because it
restricted only the mass producers of copies. It did not take freedom away from
readers of books. An ordinary reader, who did not own a printing press, could
copy books only with pen and ink, and few readers were sued for that.

Digital technology is more flexible than the printing press: when information
has digital form, you can easily copy it to share it with others. This very
flexibility makes a bad fit with a system like copyright. That’s the reason for
the increasingly nasty and draconian measures now used to enforce software
copyright. Consider these four practices of the Software Publishers Association
(SPA):

• Massive propaganda saying it is wrong to disobey the owners to help your
friend.

• Solicitation for stool pigeons to inform on their coworkers and colleagues.

• Raids (with police help) on offices and schools, in which people are told
they must prove they are innocent of illegal copying.

• Prosecution (by the US government, at the SPA’s request) of people such
as MIT’s David LaMacchia, not for copying software (he is not accused
of copying any), but merely for leaving copying facilities unguarded and
failing to censor their use.1

All four practices resemble those used in the former Soviet Union, where
every copying machine had a guard to prevent forbidden copying, and where
individuals had to copy information secretly and pass it from hand to hand as
samizdat. There is of course a difference: the motive for information control
in the Soviet Union was political; in the US the motive is profit. But it is the

1 The charges were subsequently dismissed.

Copyright c© 1994, 2009 Richard Stallman
This essay was originally published in Technos: Quarterly for Education and

Technology, vol. 3, n. 2, pp. 24–26, Summer 1994. This version is published in Free
Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed. (Boston:
GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

38 Free Software, Free Society, 2nd ed.

actions that affect us, not the motive. Any attempt to block the sharing of
information, no matter why, leads to the same methods and the same harshness.

Owners make several kinds of arguments for giving them the power to control
how we use information:

Name Calling

Owners use smear words such as “piracy” and “theft,” as well as expert termi-
nology such as “intellectual property” and “damage,” to suggest a certain line
of thinking to the public—a simplistic analogy between programs and physical
objects.

Our ideas and intuitions about property for material objects are about
whether it is right to take an object away from someone else. They don’t di-
rectly apply to making a copy of something. But the owners ask us to apply
them anyway.

Exaggeration

Owners say that they suffer “harm” or “economic loss” when users copy pro-
grams themselves. But the copying has no direct effect on the owner, and it
harms no one. The owner can lose only if the person who made the copy would
otherwise have paid for one from the owner.

A little thought shows that most such people would not have bought copies.
Yet the owners compute their “losses” as if each and every one would have
bought a copy. That is exaggeration—to put it kindly.

The Law

Owners often describe the current state of the law, and the harsh penalties they
can threaten us with. Implicit in this approach is the suggestion that today’s law
reflects an unquestionable view of morality—yet at the same time, we are urged
to regard these penalties as facts of nature that can’t be blamed on anyone.

This line of persuasion isn’t designed to stand up to critical thinking; it’s
intended to reinforce a habitual mental pathway.

It’s elementary that laws don’t decide right and wrong. Every American
should know that, in the 1950s, it was against the law in many states for a black
person to sit in the front of a bus; but only racists would say sitting there was
wrong.

Natural Rights

Authors often claim a special connection with programs they have written, and
go on to assert that, as a result, their desires and interests concerning the pro-
gram simply outweigh those of anyone else—or even those of the whole rest of
the world. (Typically companies, not authors, hold the copyrights on software,
but we are expected to ignore this discrepancy.)

To those who propose this as an ethical axiom—the author is more important
than you—I can only say that I, a notable software author myself, call it bunk.

Chapter 5: Why Software Should Not Have Owners 39

But people in general are only likely to feel any sympathy with the natural
rights claims for two reasons.

One reason is an overstretched analogy with material objects. When I cook
spaghetti, I do object if someone else eats it, because then I cannot eat it. His
action hurts me exactly as much as it benefits him; only one of us can eat the
spaghetti, so the question is, which one? The smallest distinction between us is
enough to tip the ethical balance.

But whether you run or change a program I wrote affects you directly and
me only indirectly. Whether you give a copy to your friend affects you and your
friend much more than it affects me. I shouldn’t have the power to tell you not
to do these things. No one should.

The second reason is that people have been told that natural rights for au-
thors is the accepted and unquestioned tradition of our society.

As a matter of history, the opposite is true. The idea of natural rights of
authors was proposed and decisively rejected when the US Constitution was
drawn up. That’s why the Constitution only permits a system of copyright and
does not require one; that’s why it says that copyright must be temporary. It
also states that the purpose of copyright is to promote progress—not to reward
authors. Copyright does reward authors somewhat, and publishers more, but
that is intended as a means of modifying their behavior.

The real established tradition of our society is that copyright cuts into the
natural rights of the public—and that this can only be justified for the public’s
sake.

Economics

The final argument made for having owners of software is that this leads to
production of more software.

Unlike the others, this argument at least takes a legitimate approach to the
subject. It is based on a valid goal—satisfying the users of software. And it
is empirically clear that people will produce more of something if they are well
paid for doing so.

But the economic argument has a flaw: it is based on the assumption that
the difference is only a matter of how much money we have to pay. It assumes
that production of software is what we want, whether the software has owners
or not.

People readily accept this assumption because it accords with our experiences
with material objects. Consider a sandwich, for instance. You might well be
able to get an equivalent sandwich either gratis or for a price. If so, the amount
you pay is the only difference. Whether or not you have to buy it, the sandwich
has the same taste, the same nutritional value, and in either case you can only
eat it once. Whether you get the sandwich from an owner or not cannot directly
affect anything but the amount of money you have afterwards.

This is true for any kind of material object—whether or not it has an owner
does not directly affect what it is, or what you can do with it if you acquire it.

40 Free Software, Free Society, 2nd ed.

But if a program has an owner, this very much affects what it is, and what
you can do with a copy if you buy one. The difference is not just a matter of
money. The system of owners of software encourages software owners to produce
something—but not what society really needs. And it causes intangible ethical
pollution that affects us all.

What does society need? It needs information that is truly available to its
citizens—for example, programs that people can read, fix, adapt, and improve,
not just operate. But what software owners typically deliver is a black box that
we can’t study or change.

Society also needs freedom. When a program has an owner, the users lose
freedom to control part of their own lives.

And, above all, society needs to encourage the spirit of voluntary cooperation
in its citizens. When software owners tell us that helping our neighbors in a
natural way is “piracy,” they pollute our society’s civic spirit.

This is why we say that free software is a matter of freedom, not price.
The economic argument for owners is erroneous, but the economic issue is

real. Some people write useful software for the pleasure of writing it or for
admiration and love; but if we want more software than those people write, we
need to raise funds.

Since the 1980s, free software developers have tried various methods of finding
funds, with some success. There’s no need to make anyone rich; a typical income
is plenty of incentive to do many jobs that are less satisfying than programming.

For years, until a fellowship made it unnecessary, I made a living from custom
enhancements of the free software I had written. Each enhancement was added
to the standard released version and thus eventually became available to the
general public. Clients paid me so that I would work on the enhancements they
wanted, rather than on the features I would otherwise have considered highest
priority.

Some free software developers make money by selling support services. In
1994, Cygnus Support, with around 50 employees, estimated that about 15 per-
cent of its staff activity was free software development—a respectable percentage
for a software company.

In the early 1990s, companies including Intel, Motorola, Analog Devices
Texas Instruments and Analog Devices combined to fund the continued devel-
opment of the GNU C compiler. Most GCC development is still done by paid
developers. The GNU compiler for the Ada language was funded in the 90s by
the US Air Force, and continued since then by a company formed specifically
for the purpose.

The free software movement is still small, but the example of listener-
supported radio in the US shows it’s possible to support a large activity without
forcing each user to pay.

As a computer user today, you may find yourself using a proprietary program.
If your friend asks to make a copy, it would be wrong to refuse. Cooperation is
more important than copyright. But underground, closet cooperation does not

Chapter 5: Why Software Should Not Have Owners 41

make for a good society. A person should aspire to live an upright life openly
with pride, and this means saying no to proprietary software.

You deserve to be able to cooperate openly and freely with other people
who use software. You deserve to be able to learn how the software works, and
to teach your students with it. You deserve to be able to hire your favorite
programmer to fix it when it breaks.

You deserve free software.

Chapter 6: Why Software Should Be Free 43

6 Why Software Should Be Free

Introduction

The existence of software inevitably raises the question of how decisions about
its use should be made. For example, suppose one individual who has a copy of
a program meets another who would like a copy. It is possible for them to copy
the program; who should decide whether this is done? The individuals involved?
Or another party, called the “owner”?

Software developers typically consider these questions on the assumption that
the criterion for the answer is to maximize developers’ profits. The political
power of business has led to the government adoption of both this criterion and
the answer proposed by the developers: that the program has an owner, typically
a corporation associated with its development.

I would like to consider the same question using a different criterion: the
prosperity and freedom of the public in general.

This answer cannot be decided by current law—the law should conform to
ethics, not the other way around. Nor does current practice decide this question,
although it may suggest possible answers. The only way to judge is to see who is
helped and who is hurt by recognizing owners of software, why, and how much.
In other words, we should perform a cost-benefit analysis on behalf of society as
a whole, taking account of individual freedom as well as production of material
goods.

In this essay, I will describe the effects of having owners, and show that
the results are detrimental. My conclusion is that programmers have the duty
to encourage others to share, redistribute, study, and improve the software we
write: in other words, to write “free” software.1

How Owners Justify Their Power

Those who benefit from the current system where programs are property of-
fer two arguments in support of their claims to own programs: the emotional
argument and the economic argument.

The emotional argument goes like this: “I put my sweat, my heart, my soul
into this program. It comes from me, it’s mine!”

This argument does not require serious refutation. The feeling of attachment
is one that programmers can cultivate when it suits them; it is not inevitable.

1 The word “free” in “free software” refers to freedom, not to price; the price paid
for a copy of a free program may be zero, or small, or (rarely) quite large.

Copyright c© 1991, 1992, 1998, 2000, 2001, 2006, 2007, 2010 Free Software
Foundation, Inc.

This version of this essay is part of Free Software, Free Society: Selected Essays
of Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

44 Free Software, Free Society, 2nd ed.

Consider, for example, how willingly the same programmers usually sign over all
rights to a large corporation for a salary; the emotional attachment mysteriously
vanishes. By contrast, consider the great artists and artisans of medieval times,
who didn’t even sign their names to their work. To them, the name of the
artist was not important. What mattered was that the work was done—and the
purpose it would serve. This view prevailed for hundreds of years.

The economic argument goes like this: “I want to get rich”—usually de-
scribed inaccurately as “making a living”—“and if you don’t allow me to get
rich by programming, then I won’t program. Everyone else is like me, so no-
body will ever program. And then you’ll be stuck with no programs at all!”
This threat is usually veiled as friendly advice from the wise.

I’ll explain later why this threat is a bluff. First I want to address an implicit
assumption that is more visible in another formulation of the argument.

This formulation starts by comparing the social utility of a proprietary pro-
gram with that of no program, and then concludes that proprietary software
development is, on the whole, beneficial, and should be encouraged. The fal-
lacy here is in comparing only two outcomes—proprietary software versus no
software—and assuming there are no other possibilities.

Given a system of software copyright, software development is usually linked
with the existence of an owner who controls the software’s use. As long as
this linkage exists, we are often faced with the choice of proprietary software or
none. However, this linkage is not inherent or inevitable; it is a consequence of
the specific social/legal policy decision that we are questioning: the decision to
have owners. To formulate the choice as between proprietary software versus no
software is begging the question.

The Argument against Having Owners

The question at hand is, “Should development of software be linked with having
owners to restrict the use of it?”

In order to decide this, we have to judge the effect on society of each of those
two activities independently : the effect of developing the software (regardless
of its terms of distribution), and the effect of restricting its use (assuming the
software has been developed). If one of these activities is helpful and the other is
harmful, we would be better off dropping the linkage and doing only the helpful
one.

To put it another way, if restricting the distribution of a program already
developed is harmful to society overall, then an ethical software developer will
reject the option of doing so.

To determine the effect of restricting sharing, we need to compare the value to
society of a restricted (i.e., proprietary) program with that of the same program,
available to everyone. This means comparing two possible worlds.

This analysis also addresses the simple counterargument sometimes made
that “the benefit to the neighbor of giving him or her a copy of a program
is cancelled by the harm done to the owner.” This counterargument assumes
that the harm and the benefit are equal in magnitude. The analysis involves

Chapter 6: Why Software Should Be Free 45

comparing these magnitudes, and shows that the benefit is much greater.
To elucidate this argument, let’s apply it in another area: road construction.
It would be possible to fund the construction of all roads with tolls. This

would entail having toll booths at all street corners. Such a system would provide
a great incentive to improve roads. It would also have the virtue of causing the
users of any given road to pay for that road. However, a toll booth is an artificial
obstruction to smooth driving—artificial, because it is not a consequence of how
roads or cars work.

Comparing free roads and toll roads by their usefulness, we find that (all else
being equal) roads without toll booths are cheaper to construct, cheaper to run,
safer, and more efficient to use.2 In a poor country, tolls may make the roads
unavailable to many citizens. The roads without toll booths thus offer more
benefit to society at less cost; they are preferable for society. Therefore, society
should choose to fund roads in another way, not by means of toll booths. Use
of roads, once built, should be free.

When the advocates of toll booths propose them as merely a way of raising
funds, they distort the choice that is available. Toll booths do raise funds, but
they do something else as well: in effect, they degrade the road. The toll road is
not as good as the free road; giving us more or technically superior roads may
not be an improvement if this means substituting toll roads for free roads.

Of course, the construction of a free road does cost money, which the public
must somehow pay. However, this does not imply the inevitability of toll booths.
We who must in either case pay will get more value for our money by buying a
free road.

I am not saying that a toll road is worse than no road at all. That would
be true if the toll were so great that hardly anyone used the road—but this
is an unlikely policy for a toll collector. However, as long as the toll booths
cause significant waste and inconvenience, it is better to raise the funds in a less
obstructive fashion.

To apply the same argument to software development, I will now show that
having “toll booths” for useful software programs costs society dearly: it makes
the programs more expensive to construct, more expensive to distribute, and
less satisfying and efficient to use. It will follow that program construction
should be encouraged in some other way. Then I will go on to explain other
methods of encouraging and (to the extent actually necessary) funding software
development.

The Harm Done by Obstructing Software

Consider for a moment that a program has been developed, and any necessary

2 The issues of pollution and traffic congestion do not alter this conclusion. If we
wish to make driving more expensive to discourage driving in general, it is dis-
advantageous to do this using toll booths, which contribute to both pollution
and congestion. A tax on gasoline is much better. Likewise, a desire to enhance
safety by limiting maximum speed is not relevant; a free-access road enhances the
average speed by avoiding stops and delays, for any given speed limit.

46 Free Software, Free Society, 2nd ed.

payments for its development have been made; now society must choose either
to make it proprietary or allow free sharing and use. Assume that the existence
of the program and its availability is a desirable thing.3

Restrictions on the distribution and modification of the program cannot fa-
cilitate its use. They can only interfere. So the effect can only be negative. But
how much? And what kind?

Three different levels of material harm come from such obstruction:

• Fewer people use the program.

• None of the users can adapt or fix the program.

• Other developers cannot learn from the program, or base new work on it.

Each level of material harm has a concomitant form of psychosocial harm.
This refers to the effect that people’s decisions have on their subsequent feelings,
attitudes, and predispositions. These changes in people’s ways of thinking will
then have a further effect on their relationships with their fellow citizens, and
can have material consequences.

The three levels of material harm waste part of the value that the program
could contribute, but they cannot reduce it to zero. If they waste nearly all the
value of the program, then writing the program harms society by at most the
effort that went into writing the program. Arguably a program that is profitable
to sell must provide some net direct material benefit.

However, taking account of the concomitant psychosocial harm, there is no
limit to the harm that proprietary software development can do.

Obstructing Use of Programs

The first level of harm impedes the simple use of a program. A copy of a
program has nearly zero marginal cost (and you can pay this cost by doing the
work yourself), so in a free market, it would have nearly zero price. A license
fee is a significant disincentive to use the program. If a widely useful program
is proprietary, far fewer people will use it.

It is easy to show that the total contribution of a program to society is re-
duced by assigning an owner to it. Each potential user of the program, faced
with the need to pay to use it, may choose to pay, or may forego use of the pro-
gram. When a user chooses to pay, this is a zero-sum transfer of wealth between
two parties. But each time someone chooses to forego use of the program, this
harms that person without benefiting anyone. The sum of negative numbers and
zeros must be negative.

3 One might regard a particular computer program as a harmful thing that should
not be available at all, like the Lotus Marketplace database of personal informa-
tion, which was withdrawn from sale due to public disapproval. Most of what I
say does not apply to this case, but it makes little sense to argue for having an
owner on the grounds that the owner will make the program less available. The
owner will not make it completely unavailable, as one would wish in the case of a
program whose use is considered destructive.

Chapter 6: Why Software Should Be Free 47

But this does not reduce the amount of work it takes to develop the program.
As a result, the efficiency of the whole process, in delivered user satisfaction per
hour of work, is reduced.

This reflects a crucial difference between copies of programs and cars, chairs,
or sandwiches. There is no copying machine for material objects outside of
science fiction. But programs are easy to copy; anyone can produce as many
copies as are wanted, with very little effort. This isn’t true for material objects
because matter is conserved: each new copy has to be built from raw materials
in the same way that the first copy was built.

With material objects, a disincentive to use them makes sense, because fewer
objects bought means less raw material and work needed to make them. It’s true
that there is usually also a startup cost, a development cost, which is spread over
the production run. But as long as the marginal cost of production is significant,
adding a share of the development cost does not make a qualitative difference.
And it does not require restrictions on the freedom of ordinary users.

However, imposing a price on something that would otherwise be free is a
qualitative change. A centrally imposed fee for software distribution becomes a
powerful disincentive.

What’s more, central production as now practiced is inefficient even as a
means of delivering copies of software. This system involves enclosing physical
disks or tapes in superfluous packaging, shipping large numbers of them around
the world, and storing them for sale. This cost is presented as an expense of
doing business; in truth, it is part of the waste caused by having owners.

Damaging Social Cohesion

Suppose that both you and your neighbor would find it useful to run a certain
program. In ethical concern for your neighbor, you should feel that proper
handling of the situation will enable both of you to use it. A proposal to permit
only one of you to use the program, while restraining the other, is divisive;
neither you nor your neighbor should find it acceptable.

Signing a typical software license agreement means betraying your neighbor:
“I promise to deprive my neighbor of this program so that I can have a copy for
myself.” People who make such choices feel internal psychological pressure to
justify them, by downgrading the importance of helping one’s neighbors—thus
public spirit suffers. This is psychosocial harm associated with the material
harm of discouraging use of the program.

Many users unconsciously recognize the wrong of refusing to share, so they
decide to ignore the licenses and laws, and share programs anyway. But they
often feel guilty about doing so. They know that they must break the laws
in order to be good neighbors, but they still consider the laws authoritative,
and they conclude that being a good neighbor (which they are) is naughty or
shameful. That is also a kind of psychosocial harm, but one can escape it by
deciding that these licenses and laws have no moral force.

Programmers also suffer psychosocial harm knowing that many users will not
be allowed to use their work. This leads to an attitude of cynicism or denial.

48 Free Software, Free Society, 2nd ed.

A programmer may describe enthusiastically the work that he finds technically
exciting; then when asked, “Will I be permitted to use it?” his face falls, and he
admits the answer is no. To avoid feeling discouraged, he either ignores this fact
most of the time or adopts a cynical stance designed to minimize the importance
of it.

Since the age of Reagan, the greatest scarcity in the United States is not
technical innovation, but rather the willingness to work together for the public
good. It makes no sense to encourage the former at the expense of the latter.

Obstructing Custom Adaptation of Programs

The second level of material harm is the inability to adapt programs. The ease
of modification of software is one of its great advantages over older technology.
But most commercially available software isn’t available for modification, even
after you buy it. It’s available for you to take it or leave it, as a black box—that
is all.

A program that you can run consists of a series of numbers whose meaning
is obscure. No one, not even a good programmer, can easily change the numbers
to make the program do something different.

Programmers normally work with the “source code” for a program, which
is written in a programming language such as Fortran or C. It uses names to
designate the data being used and the parts of the program, and it represents
operations with symbols such as ‘+’ for addition and ‘−’ for subtraction. It is
designed to help programmers read and change programs. Here is an example;
a program to calculate the distance between two points in a plane:

float

distance (p0, p1)

struct point p0, p1;

{

float xdist = p1.x - p0.x;

float ydist = p1.y - p0.y;

return sqrt (xdist * xdist + ydist * ydist);

}

Precisely what that source code means is not the point; the point is that it looks
like algebra, and a person who knows this programming language will find it
meaningful and clear. By contrast, here is same program in executable form, on
the computer I normally used when I wrote this:

1314258944 -232267772 -231844864 1634862

1411907592 -231844736 2159150 1420296208

-234880989 -234879837 -234879966 -232295424

1644167167 -3214848 1090581031 1962942495

572518958 -803143692 1314803317

Source code is useful (at least potentially) to every user of a program. But
most users are not allowed to have copies of the source code. Usually the source
code for a proprietary program is kept secret by the owner, lest anybody else
learn something from it. Users receive only the files of incomprehensible numbers

Chapter 6: Why Software Should Be Free 49

that the computer will execute. This means that only the program’s owner can
change the program.

A friend once told me of working as a programmer in a bank for about six
months, writing a program similar to something that was commercially available.
She believed that if she could have gotten source code for that commercially
available program, it could easily have been adapted to their needs. The bank
was willing to pay for this, but was not permitted to—the source code was a
secret. So she had to do six months of make-work, work that counts in the GNP
but was actually waste.

The MIT Artificial Intelligence Lab (AI Lab) received a graphics printer as a
gift from Xerox around 1977. It was run by free software to which we added many
convenient features. For example, the software would notify a user immediately
on completion of a print job. Whenever the printer had trouble, such as a paper
jam or running out of paper, the software would immediately notify all users
who had print jobs queued. These features facilitated smooth operation.

Later Xerox gave the AI Lab a newer, faster printer, one of the first laser
printers. It was driven by proprietary software that ran in a separate dedicated
computer, so we couldn’t add any of our favorite features. We could arrange to
send a notification when a print job was sent to the dedicated computer, but
not when the job was actually printed (and the delay was usually considerable).
There was no way to find out when the job was actually printed; you could only
guess. And no one was informed when there was a paper jam, so the printer
often went for an hour without being fixed.

The system programmers at the AI Lab were capable of fixing such prob-
lems, probably as capable as the original authors of the program. Xerox was
uninterested in fixing them, and chose to prevent us, so we were forced to accept
the problems. They were never fixed.

Most good programmers have experienced this frustration. The bank could
afford to solve the problem by writing a new program from scratch, but a typical
user, no matter how skilled, can only give up.

Giving up causes psychosocial harm—to the spirit of self-reliance. It is de-
moralizing to live in a house that you cannot rearrange to suit your needs. It
leads to resignation and discouragement, which can spread to affect other as-
pects of one’s life. People who feel this way are unhappy and do not do good
work.

Imagine what it would be like if recipes were hoarded in the same fashion as
software. You might say, “How do I change this recipe to take out the salt?”
and the great chef would respond, “How dare you insult my recipe, the child
of my brain and my palate, by trying to tamper with it? You don’t have the
judgment to change my recipe and make it work right!”

“But my doctor says I’m not supposed to eat salt! What can I do? Will you
take out the salt for me?”

“I would be glad to do that; my fee is only $50,000.” Since the owner has
a monopoly on changes, the fee tends to be large. “However, right now I don’t
have time. I am busy with a commission to design a new recipe for ship’s biscuit

50 Free Software, Free Society, 2nd ed.

for the Navy Department. I might get around to you in about two years.”

Obstructing Software Development

The third level of material harm affects software development. Software develop-
ment used to be an evolutionary process, where a person would take an existing
program and rewrite parts of it for one new feature, and then another person
would rewrite parts to add another feature; in some cases, this continued over
a period of 20 years. Meanwhile, parts of the program would be “cannibalized”
to form the beginnings of other programs.

The existence of owners prevents this kind of evolution, making it necessary
to start from scratch when developing a program. It also prevents new practi-
tioners from studying existing programs to learn useful techniques or even how
large programs can be structured.

Owners also obstruct education. I have met bright students in computer
science who have never seen the source code of a large program. They may be
good at writing small programs, but they can’t begin to learn the different skills
of writing large ones if they can’t see how others have done it.

In any intellectual field, one can reach greater heights by standing on the
shoulders of others. But that is no longer generally allowed in the software
field—you can only stand on the shoulders of the other people in your own
company.

The associated psychosocial harm affects the spirit of scientific cooperation,
which used to be so strong that scientists would cooperate even when their
countries were at war. In this spirit, Japanese oceanographers abandoning their
lab on an island in the Pacific carefully preserved their work for the invading
U.S. Marines, and left a note asking them to take good care of it.

Conflict for profit has destroyed what international conflict spared. Nowa-
days scientists in many fields don’t publish enough in their papers to enable
others to replicate the experiment. They publish only enough to let readers
marvel at how much they were able to do. This is certainly true in computer
science, where the source code for the programs reported on is usually secret.

It Does Not Matter How Sharing Is Restricted

I have been discussing the effects of preventing people from copying, changing,
and building on a program. I have not specified how this obstruction is carried
out, because that doesn’t affect the conclusion. Whether it is done by copy
protection, or copyright, or licenses, or encryption, or ROM cards, or hardware
serial numbers, if it succeeds in preventing use, it does harm.

Users do consider some of these methods more obnoxious than others. I
suggest that the methods most hated are those that accomplish their objective.

Software Should Be Free

I have shown how ownership of a program—the power to restrict changing or
copying it—is obstructive. Its negative effects are widespread and important. It
follows that society shouldn’t have owners for programs.

Chapter 6: Why Software Should Be Free 51

Another way to understand this is that what society needs is free software,
and proprietary software is a poor substitute. Encouraging the substitute is not
a rational way to get what we need.

Vaclav Havel has advised us to “Work for something because it is good, not
just because it stands a chance to succeed.” A business making proprietary
software stands a chance of success in its own narrow terms, but it is not what
is good for society.

Why People Will Develop Software

If we eliminate copyright as a means of encouraging people to develop software,
at first less software will be developed, but that software will be more useful.
It is not clear whether the overall delivered user satisfaction will be less; but
if it is, or if we wish to increase it anyway, there are other ways to encourage
development, just as there are ways besides toll booths to raise money for streets.
Before I talk about how that can be done, first I want to question how much
artificial encouragement is truly necessary.

Programming Is Fun

There are some lines of work that few will enter except for money; road con-
struction, for example. There are other fields of study and art in which there
is little chance to become rich, which people enter for their fascination or their
perceived value to society. Examples include mathematical logic, classical mu-
sic, and archaeology; and political organizing among working people. People
compete, more sadly than bitterly, for the few funded positions available, none
of which is funded very well. They may even pay for the chance to work in the
field, if they can afford to.

Such a field can transform itself overnight if it begins to offer the possibility
of getting rich. When one worker gets rich, others demand the same opportunity.
Soon all may demand large sums of money for doing what they used to do for
pleasure. When another couple of years go by, everyone connected with the
field will deride the idea that work would be done in the field without large
financial returns. They will advise social planners to ensure that these returns
are possible, prescribing special privileges, powers, and monopolies as necessary
to do so.

This change happened in the field of computer programming in the 1980s.
In the 1970s, there were articles on “computer addiction”: users were “onlining”
and had hundred-dollar-a-week habits. It was generally understood that people
frequently loved programming enough to break up their marriages. Today, it is
generally understood that no one would program except for a high rate of pay.
People have forgotten what they knew back then.

When it is true at a given time that most people will work in a certain field
only for high pay, it need not remain true. The dynamic of change can run in
reverse, if society provides an impetus. If we take away the possibility of great
wealth, then after a while, when the people have readjusted their attitudes, they
will once again be eager to work in the field for the joy of accomplishment.

52 Free Software, Free Society, 2nd ed.

The question “How can we pay programmers?” becomes an easier question
when we realize that it’s not a matter of paying them a fortune. A mere living
is easier to raise.

Funding Free Software

Institutions that pay programmers do not have to be software houses. Many
other institutions already exist that can do this.

Hardware manufacturers find it essential to support software development
even if they cannot control the use of the software. In 1970, much of their
software was free because they did not consider restricting it. Today, their
increasing willingness to join consortiums shows their realization that owning
the software is not what is really important for them.

Universities conduct many programming projects. Today they often sell the
results, but in the 1970s they did not. Is there any doubt that universities
would develop free software if they were not allowed to sell software? These
projects could be supported by the same government contracts and grants that
now support proprietary software development.

It is common today for university researchers to get grants to develop a
system, develop it nearly to the point of completion and call that “finished,” and
then start companies where they really finish the project and make it usable.
Sometimes they declare the unfinished version “free”; if they are thoroughly
corrupt, they instead get an exclusive license from the university. This is not
a secret; it is openly admitted by everyone concerned. Yet if the researchers
were not exposed to the temptation to do these things, they would still do their
research.

Programmers writing free software can make their living by selling services
related to the software. I have been hired to port the GNU C compiler to new
hardware, and to make user-interface extensions to GNU Emacs. (I offer these
improvements to the public once they are done.) I also teach classes for which
I am paid.

I am not alone in working this way; there is now a successful, growing corpo-
ration which does no other kind of work. Several other companies also provide
commercial support for the free software of the GNU system. This is the be-
ginning of the independent software support industry—an industry that could
become quite large if free software becomes prevalent. It provides users with an
option generally unavailable for proprietary software, except to the very wealthy.

Institutions such as the Free Software Foundation can also fund programmers.
Most of the Foundation’s funds come from users buying tapes through the mail.
The software on the tapes is free, which means that every user has the freedom
to copy it and change it, but many nonetheless pay to get copies. (Recall that
“free software” refers to freedom, not to price.) Some users who already have a
copy order tapes as a way of making a contribution they feel we deserve. The
Foundation also receives sizable donations from computer manufacturers.

The Free Software Foundation is a charity, and its income is spent on hiring as
many programmers as possible. If it had been set up as a business, distributing

Chapter 6: Why Software Should Be Free 53

the same free software to the public for the same fee, it would now provide a
very good living for its founder.

Because the Foundation is a charity, programmers often work for the Foun-
dation for half of what they could make elsewhere. They do this because we are
free of bureaucracy, and because they feel satisfaction in knowing that their work
will not be obstructed from use. Most of all, they do it because programming
is fun. In addition, volunteers have written many useful programs for us. (Even
technical writers have begun to volunteer.)

This confirms that programming is among the most fascinating of all fields,
along with music and art. We don’t have to fear that no one will want to
program.

What Do Users Owe to Developers?

There is a good reason for users of software to feel a moral obligation to con-
tribute to its support. Developers of free software are contributing to the users’
activities, and it is both fair and in the long-term interest of the users to give
them funds to continue.

However, this does not apply to proprietary software developers, since ob-
structionism deserves a punishment rather than a reward.

We thus have a paradox: the developer of useful software is entitled to the
support of the users, but any attempt to turn this moral obligation into a re-
quirement destroys the basis for the obligation. A developer can either deserve
a reward or demand it, but not both.

I believe that an ethical developer faced with this paradox must act so as to
deserve the reward, but should also entreat the users for voluntary donations.
Eventually the users will learn to support developers without coercion, just as
they have learned to support public radio and television stations.

What Is Software Productivity?

If software were free, there would still be programmers, but perhaps fewer of
them. Would this be bad for society?

Not necessarily. Today the advanced nations have fewer farmers than in
1900, but we do not think this is bad for society, because the few deliver more
food to the consumers than the many used to do. We call this improved produc-
tivity. Free software would require far fewer programmers to satisfy the demand,
because of increased software productivity at all levels:

• Wider use of each program that is developed.

• The ability to adapt existing programs for customization instead of starting
from scratch.

• Better education of programmers.

• The elimination of duplicate development effort.

Those who object to cooperation claiming it would result in the employment
of fewer programmers are actually objecting to increased productivity. Yet these

54 Free Software, Free Society, 2nd ed.

people usually accept the widely held belief that the software industry needs
increased productivity. How is this?

“Software productivity” can mean two different things: the overall productiv-
ity of all software development, or the productivity of individual projects. Over-
all productivity is what society would like to improve, and the most straightfor-
ward way to do this is to eliminate the artificial obstacles to cooperation which
reduce it. But researchers who study the field of “software productivity” fo-
cus only on the second, limited, sense of the term, where improvement requires
difficult technological advances.

Is Competition Inevitable?

Is it inevitable that people will try to compete, to surpass their rivals in society?
Perhaps it is. But competition itself is not harmful; the harmful thing is combat.

There are many ways to compete. Competition can consist of trying to
achieve ever more, to outdo what others have done. For example, in the old
days, there was competition among programming wizards—competition for who
could make the computer do the most amazing thing, or for who could make
the shortest or fastest program for a given task. This kind of competition can
benefit everyone, as long as the spirit of good sportsmanship is maintained.

Constructive competition is enough competition to motivate people to great
efforts. A number of people are competing to be the first to have visited all the
countries on Earth; some even spend fortunes trying to do this. But they do not
bribe ship captains to strand their rivals on desert islands. They are content to
let the best person win.

Competition becomes combat when the competitors begin trying to impede
each other instead of advancing themselves—when “Let the best person win”
gives way to “Let me win, best or not.” Proprietary software is harmful, not
because it is a form of competition, but because it is a form of combat among
the citizens of our society.

Competition in business is not necessarily combat. For example, when two
grocery stores compete, their entire effort is to improve their own operations,
not to sabotage the rival. But this does not demonstrate a special commitment
to business ethics; rather, there is little scope for combat in this line of business
short of physical violence. Not all areas of business share this characteristic.
Withholding information that could help everyone advance is a form of combat.

Business ideology does not prepare people to resist the temptation to combat
the competition. Some forms of combat have been banned with antitrust laws,
truth in advertising laws, and so on, but rather than generalizing this to a
principled rejection of combat in general, executives invent other forms of combat
which are not specifically prohibited. Society’s resources are squandered on the
economic equivalent of factional civil war.

“Why Don’t You Move to Russia?”

In the United States, any advocate of other than the most extreme form of
laissez-faire selfishness has often heard this accusation. For example, it is leveled

Chapter 6: Why Software Should Be Free 55

against the supporters of a national health care system, such as is found in all the
other industrialized nations of the free world. It is leveled against the advocates
of public support for the arts, also universal in advanced nations. The idea that
citizens have any obligation to the public good is identified in America with
Communism. But how similar are these ideas?

Communism as was practiced in the Soviet Union was a system of central
control where all activity was regimented, supposedly for the common good,
but actually for the sake of the members of the Communist party. And where
copying equipment was closely guarded to prevent illegal copying.

The American system of software copyright exercises central control over dis-
tribution of a program, and guards copying equipment with automatic copying-
protection schemes to prevent illegal copying.

By contrast, I am working to build a system where people are free to decide
their own actions; in particular, free to help their neighbors, and free to alter
and improve the tools which they use in their daily lives. A system based on
voluntary cooperation and on decentralization.

Thus, if we are to judge views by their resemblance to Russian Communism,
it is the software owners who are the Communists.

The Question of Premises

I make the assumption in this paper that a user of software is no less important
than an author, or even an author’s employer. In other words, their interests
and needs have equal weight, when we decide which course of action is best.

This premise is not universally accepted. Many maintain that an author’s
employer is fundamentally more important than anyone else. They say, for ex-
ample, that the purpose of having owners of software is to give the author’s
employer the advantage he deserves—regardless of how this may affect the pub-
lic.

It is no use trying to prove or disprove these premises. Proof requires shared
premises. So most of what I have to say is addressed only to those who share
the premises I use, or at least are interested in what their consequences are. For
those who believe that the owners are more important than everyone else, this
paper is simply irrelevant.

But why would a large number of Americans accept a premise that elevates
certain people in importance above everyone else? Partly because of the belief
that this premise is part of the legal traditions of American society. Some people
feel that doubting the premise means challenging the basis of society.

It is important for these people to know that this premise is not part of our
legal tradition. It never has been.

Thus, the Constitution says that the purpose of copyright is to “promote the
Progress of Science and the useful Arts.” The Supreme Court has elaborated on
this, stating in Fox Film v. Doyal4 that “The sole interest of the United States
and the primary object in conferring the [copyright] monopoly lie in the general
benefits derived by the public from the labors of authors.”

4 Fox Film Corp. v. Doyal, 286 US 123, 1932.

56 Free Software, Free Society, 2nd ed.

We are not required to agree with the Constitution or the Supreme Court.
(At one time, they both condoned slavery.) So their positions do not disprove the
owner supremacy premise. But I hope that the awareness that this is a radical
right-wing assumption rather than a traditionally recognized one will weaken its
appeal.

Conclusion

We like to think that our society encourages helping your neighbor; but each
time we reward someone for obstructionism, or admire them for the wealth they
have gained in this way, we are sending the opposite message.

Software hoarding is one form of our general willingness to disregard the
welfare of society for personal gain. We can trace this disregard from Ronald
Reagan to Dick Cheney, from Exxon to Enron, from failing banks to failing
schools. We can measure it with the size of the homeless population and the
prison population. The antisocial spirit feeds on itself, because the more we see
that other people will not help us, the more it seems futile to help them. Thus
society decays into a jungle.

If we don’t want to live in a jungle, we must change our attitudes. We
must start sending the message that a good citizen is one who cooperates when
appropriate, not one who is successful at taking from others. I hope that the free
software movement will contribute to this: at least in one area, we will replace
the jungle with a more efficient system which encourages and runs on voluntary
cooperation.

Chapter 7: Why Schools Should Exclusively Use Free Software 57

7 Why Schools Should Exclusively Use

Free Software

There are general reasons why all computer users should insist on free software:
it gives users the freedom to control their own computers—with proprietary
software, the computer does what the software owner wants it to do, not what
the user wants it to do. Free software also gives users the freedom to cooperate
with each other, to lead an upright life. These reasons apply to schools as they
do to everyone.

The purpose of this article is to state additional reasons that apply specifically
to education.

First, free software can save schools money. Free software gives schools, like
other users, the freedom to copy and redistribute the software, so the school
system can make copies for all the computers they have. In poor countries, this
can help close the digital divide.

This obvious reason, while important in practical terms, is rather shallow.
And proprietary software developers can eliminate this reason by donating copies
to the schools. (Warning: a school that accepts such an offer may have to pay
for upgrades later.) So let’s look at the deeper reasons.

Schools have a social mission: to teach students to be citizens of a strong,
capable, independent, cooperating and free society. They should promote the
use of free software just as they promote recycling. If schools teach students free
software, then the students will tend to use free software after they graduate.
This will help society as a whole escape from being dominated (and gouged) by
megacorporations.

What schools should refuse to do is teach dependence. Those corporations
offer free samples to schools for the same reason tobacco companies distribute
free cigarettes to minors: to get children addicted.1 They will not give discounts
to these students once they’ve grown up and graduated.

Free software permits students to learn how software works. Some students,
on reaching their teens, want to learn everything there is to know about their
computer and its software. They are intensely curious to read the source code of
the programs that they use every day. To learn to write good code, students need
to read lots of code and write lots of code. They need to read and understand
real programs that people really use. Only free software permits this.

1 RJ Reynolds Tobacco Company was fined $15m in 2002 for handing out free sam-
ples of cigarettes at events attended by children. See http://www.bbc.co.uk/

worldservice/sci_tech/features/health/tobaccotrial/usa.htm.

Copyright c© 2003, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 2003. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://www.bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm
http://www.bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm
http://gnu.org

58 Free Software, Free Society, 2nd ed.

Proprietary software rejects their thirst for knowledge: it says, “The knowl-
edge you want is a secret—learning is forbidden!” Free software encourages
everyone to learn. The free software community rejects the “priesthood of tech-
nology,” which keeps the general public in ignorance of how technology works;
we encourage students of any age and situation to read the source code and learn
as much as they want to know. Schools that use free software will enable gifted
programming students to advance.

The deepest reason for using free software in schools is for moral education.
We expect schools to teach students basic facts and useful skills, but that is not
their whole job. The most fundamental job of schools is to teach good citizenship,
which includes the habit of helping others. In the area of computing, this means
teaching people to share software. Schools, starting from nursery school, should
tell their pupils, “If you bring software to school, you must share it with the other
students. And you must show the source code to the class, in case someone wants
to learn.”

Of course, the school must practice what it preaches: all the software in-
stalled by the school should be available for students to copy, take home, and
redistribute further.

Teaching the students to use free software, and to participate in the free
software community, is a hands-on civics lesson. It also teaches students the
role model of public service rather than that of tycoons. All levels of school
should use free software.

Chapter 8: Releasing Free Software If You Work at a University 59

8 Releasing Free Software If You Work at

a University

In the free software movement, we believe computer users should have the free-
dom to change and redistribute the software that they use. The “free” in “free
software” refers to freedom: it means users have the freedom to run, modify and
redistribute the software. Free software contributes to human knowledge, while
nonfree software does not. Universities should therefore encourage free soft-
ware for the sake of advancing human knowledge, just as they should encourage
scientists and other scholars to publish their work.

Alas, many university administrators have a grasping attitude towards soft-
ware (and towards science); they see programs as opportunities for income, not
as opportunities to contribute to human knowledge. Free software developers
have been coping with this tendency for almost 20 years.

When I started developing the GNU operating system, in 1984, my first step
was to quit my job at MIT. I did this specifically so that the MIT licensing
office would be unable to interfere with releasing GNU as free software. I had
planned an approach for licensing the programs in GNU that would ensure that
all modified versions must be free software as well—an approach that developed
into the GNU General Public License (GNU GPL)—and I did not want to have
to beg the MIT administration to let me use it.

Over the years, university affiliates have often come to the Free Software
Foundation for advice on how to cope with administrators who see software
only as something to sell. One good method, applicable even for specifically
funded projects, is to base your work on an existing program that was released
under the GNU GPL. Then you can tell the administrators, “We’re not allowed
to release the modified version except under the GNU GPL—any other way
would be copyright infringement.” After the dollar signs fade from their eyes,
they will usually consent to releasing it as free software.

You can also ask your funding sponsor for help. When a group at NYU
developed the GNU Ada Compiler, with funding from the US Air Force, the
contract explicitly called for donating the resulting code to the Free Software
Foundation. Work out the arrangement with the sponsor first, then politely
show the university administration that it is not open to renegotiation. They
would rather have a contract to develop free software than no contract at all, so
they will most likely go along.

Whatever you do, raise the issue early—well before the program is half fin-
ished. At this point, the university still needs you, so you can play hardball:

Copyright c© 2002 Richard Stallman
This essay was originally published on http://gnu.org, in 2002. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

60 Free Software, Free Society, 2nd ed.

tell the administration you will finish the program, make it usable, if they agree
in writing to make it free software (and agree to your choice of free software
license). Otherwise you will work on it only enough to write a paper about it,
and never make a version good enough to release. When the administrators
know their choice is to have a free software package that brings credit to the
university or nothing at all, they will usually choose the former.

Not all universities have grasping policies. The University of Texas has a
policy that makes it easy to release software developed there as free software un-
der the GNU General Public License. Univates, in Brazil, and the International
Institute of Information Technology in Hyderabad, India, both have policies in
favor of releasing software under the GPL. By developing faculty support first,
you may be able to institute such a policy at your university. Present the is-
sue as one of principle: does the university have a mission to advance human
knowledge, or is its sole purpose to perpetuate itself?

Whatever approach you use, it helps to approach the issue with determina-
tion and based on an ethical perspective, as we do in the free software movement.
To treat the public ethically, the software should be free—as in freedom—for the
whole public.

Many developers of free software profess narrowly practical reasons for doing
so: they advocate allowing others to share and change software as an expe-
dient for making software powerful and reliable. If those values motivate you
to develop free software, well and good, and thank you for your contribution.
But those values do not give you a good footing to stand firm when university
administrators pressure or tempt you to make the program nonfree.

For instance, they may argue that “We could make it even more powerful
and reliable with all the money we can get.” This claim may or may not come
true in the end, but it is hard to disprove in advance. They may suggest a
license to offer copies “free of charge, for academic use only,” which would tell
the general public they don’t deserve freedom, and argue that this will obtain
the cooperation of academia, which is all (they say) you need.

If you start from values of convenience alone, it is hard to make a good
case for rejecting these dead-end proposals, but you can do it easily if you base
your stand on ethical and political values. What good is it to make a program
powerful and reliable at the expense of users’ freedom? Shouldn’t freedom apply
outside academia as well as within it? The answers are obvious if freedom and
community are among your goals. Free software respects the users’ freedom,
while nonfree software negates it.

Nothing strengthens your resolve like knowing that the community’s freedom
depends, in one instance, on you.

Chapter 9: Why Free Software Needs Free Documentation 61

9 Why Free Software Needs

Free Documentation

The biggest deficiency in free operating systems is not in the software—it is the
lack of good free manuals that we can include in these systems. Many of our
most important programs do not come with full manuals. Documentation is an
essential part of any software package; when an important free software package
does not come with a free manual, that is a major gap. We have many such
gaps today.

Once upon a time, many years ago, I thought I would learn Perl. I got a copy
of a free manual, but I found it hard to read. When I asked Perl users about
alternatives, they told me that there were better introductory manuals—but
those were not free.

Why was this? The authors of the good manuals had written them for
O’Reilly Associates, which published them with restrictive terms—no copying,
no modification, source files not available—which exclude them from the free
software community.

That wasn’t the first time this sort of thing has happened, and (to our
community’s great loss) it was far from the last. Proprietary manual publishers
have enticed a great many authors to restrict their manuals since then. Many
times I have heard a GNU user eagerly tell me about a manual that he is writing,
with which he expects to help the GNU Project—and then had my hopes dashed,
as he proceeded to explain that he had signed a contract with a publisher that
would restrict it so that we cannot use it.

Given that writing good English is a rare skill among programmers, we can
ill afford to lose manuals this way.

Free documentation, like free software, is a matter of freedom, not price. The
problem with these manuals was not that O’Reilly Associates charged a price for
printed copies—that in itself is fine. (The Free Software Foundation sells printed
copies of free GNU manuals, too.) But GNU manuals are available in source
code form, while these manuals are available only on paper. GNU manuals come
with permission to copy and modify; the Perl manuals do not. These restrictions
are the problems.

The criterion for a free manual is pretty much the same as for free software:
it is a matter of giving all users certain freedoms. Redistribution (including com-
mercial redistribution) must be permitted, so that the manual can accompany

Copyright c© 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2009 Free Software Foundation, Inc.

This essay was originally published on http://gnu.org, in 1996. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

62 Free Software, Free Society, 2nd ed.

every copy of the program, on line or on paper. Permission for modification is
crucial too.

As a general rule, I don’t believe that it is essential for people to have per-
mission to modify all sorts of articles and books. The issues for writings are not
necessarily the same as those for software. For example, I don’t think you or
I are obliged to give permission to modify articles like this one, which describe
our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify
the software, and add or change its features, if they are conscientious they will
change the manual too—so they can provide accurate and usable documenta-
tion with the modified program. A manual which forbids programmers from
being conscientious and finishing the job, or more precisely requires them to
write a new manual from scratch if they change the program, does not fill our
community’s needs.

While a blanket prohibition on modification is unacceptable, some kinds of
limits on the method of modification pose no problem. For example, require-
ments to preserve the original author’s copyright notice, the distribution terms,
or the list of authors, are OK. It is also no problem to require modified ver-
sions to include notice that they were modified, even to have entire sections that
may not be deleted or changed, as long as these sections deal with nontechnical
topics. (Some GNU manuals have them.)

These kinds of restrictions are not a problem because, as a practical matter,
they don’t stop the conscientious programmer from adapting the manual to
fit the modified program. In other words, they don’t block the free software
community from making full use of the manual.

However, it must be possible to modify all the technical content of the man-
ual, and then distribute the result through all the usual media, through all the
usual channels; otherwise, the restrictions do block the community, the manual
is not free, and so we need another manual.

Unfortunately, it is often hard to find someone to write another manual
when a proprietary manual exists. The obstacle is that many users think that a
proprietary manual is good enough—so they don’t see the need to write a free
manual. They do not see that the free operating system has a gap that needs
filling.

Why do users think that proprietary manuals are good enough? Some have
not considered the issue. I hope this article will do something to change that.

Other users consider proprietary manuals acceptable for the same reason
so many people consider proprietary software acceptable: they judge in purely
practical terms, not using freedom as a criterion. These people are entitled to
their opinions, but since those opinions spring from values which do not include
freedom, they are no guide for those of us who do value freedom.

Please spread the word about this issue. We continue to lose manuals to
proprietary publishing. If we spread the word that proprietary manuals are
not sufficient, perhaps the next person who wants to help GNU by writing

Chapter 9: Why Free Software Needs Free Documentation 63

documentation will realize, before it is too late, that he must above all make it
free.

We can also encourage commercial publishers to sell free, copylefted manuals
instead of proprietary ones. One way you can help this is to check the distri-
bution terms of a manual before you buy it, and prefer copylefted manuals to
noncopylefted ones.
Note: We maintain a page that lists free books available from other publishers.

Chapter 10: Selling Free Software 65

10 Selling Free Software

Many people believe that the spirit of the GNU Project is that you should not
charge money for distributing copies of software, or that you should charge as
little as possible—just enough to cover the cost. This is a misunderstanding.

Actually, we encourage people who redistribute free software to charge as
much as they wish or can. If this seems surprising to you, please read on.

The word “free” has two legitimate general meanings; it can refer either to
freedom or to price. When we speak of “free software,” we’re talking about free-
dom, not price. (Think of “free speech,” not “free beer.”) Specifically, it means
that a user is free to run the program, change the program, and redistribute the
program with or without changes.

Free programs are sometimes distributed gratis, and sometimes for a sub-
stantial price. Often the same program is available in both ways from different
places. The program is free regardless of the price, because users have freedom
in using it.

Nonfree programs are usually sold for a high price, but sometimes a store
will give you a copy at no charge. That doesn’t make it free software, though.
Price or no price, the program is nonfree because users don’t have freedom.

Since free software is not a matter of price, a low price doesn’t make the
software free, or even closer to free. So if you are redistributing copies of free
software, you might as well charge a substantial fee and make some money.
Redistributing free software is a good and legitimate activity; if you do it, you
might as well make a profit from it.

Free software is a community project, and everyone who depends on it ought
to look for ways to contribute to building the community. For a distributor, the
way to do this is to give a part of the profit to free software development projects
or to the Free Software Foundation. This way you can advance the world of free
software.

Distributing free software is an opportunity to raise funds for development.
Don’t waste it!

In order to contribute funds, you need to have some extra. If you charge too
low a fee, you won’t have anything to spare to support development.

Some views on the ideas of selling exceptions to free software licenses, such
as the GNU GPL, are also available, at http://gnu.org/philosophy/
selling-exceptions.html.

Copyright c© 1996, 1997, 1998, 2001, 2007 Free Software Foundation, Inc.
This essay was originally published on http://gnu.org, in 1996. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/philosophy/selling-exceptions.html
http://gnu.org/philosophy/selling-exceptions.html
http://gnu.org

66 Free Software, Free Society, 2nd ed.

Will a Higher Distribution Price Hurt Some Users?

People sometimes worry that a high distribution fee will put free software out
of range for users who don’t have a lot of money. With proprietary software, a
high price does exactly that—but free software is different.

The difference is that free software naturally tends to spread around, and
there are many ways to get it.

Software hoarders try their damnedest to stop you from running a proprietary
program without paying the standard price. If this price is high, that does make
it hard for some users to use the program.

With free software, users don’t have to pay the distribution fee in order to use
the software. They can copy the program from a friend who has a copy, or with
the help of a friend who has network access. Or several users can join together,
split the price of one CD-ROM, then each in turn can install the software. A
high CD-ROM price is not a major obstacle when the software is free.

Will a Higher Distribution Price Discourage Use of Free Software?

Another common concern is for the popularity of free software. People think
that a high price for distribution would reduce the number of users, or that a
low price is likely to encourage users.

This is true for proprietary software—but free software is different. With
so many ways to get copies, the price of distribution service has less effect on
popularity.

In the long run, how many people use free software is determined mainly by
how much free software can do, and how easy it is to use. Many users do not
make freedom their priority; they may continue to use proprietary software if free
software can’t do all the jobs they want done. Thus, if we want to increase the
number of users in the long run, we should above all develop more free software.

The most direct way to do this is by writing needed free software or manuals
yourself. But if you do distribution rather than writing, the best way you can
help is by raising funds for others to write them.

The Term “Selling Software” Can Be Confusing Too

Strictly speaking, “selling” means trading goods for money. Selling a copy of a
free program is legitimate, and we encourage it.

However, when people think of “selling software,” they usually imagine doing
it the way most companies do it: making the software proprietary rather than
free.

So unless you’re going to draw distinctions carefully, the way this article does,
we suggest it is better to avoid using the term “selling software” and choose some
other wording instead. For example, you could say “distributing free software
for a fee”—that is unambiguous.

Chapter 10: Selling Free Software 67

High or Low Fees, and the GNU GPL

Except for one special situation, the GNU General Public License (GNU GPL)
has no requirements about how much you can charge for distributing a copy of
free software. You can charge nothing, a penny, a dollar, or a billion dollars.
It’s up to you, and the marketplace, so don’t complain to us if nobody wants to
pay a billion dollars for a copy.

The one exception is in the case where binaries are distributed without the
corresponding complete source code. Those who do this are required by the
GNU GPL to provide source code on subsequent request. Without a limit on
the fee for the source code, they would be able set a fee too large for anyone to
pay—such as a billion dollars—and thus pretend to release source code while in
truth concealing it. So in this case we have to limit the fee for source in order
to ensure the user’s freedom. In ordinary situations, however, there is no such
justification for limiting distribution fees, so we do not limit them.

Sometimes companies whose activities cross the line stated in the GNU GPL
plead for permission, saying that they “won’t charge money for the GNU soft-
ware” or such like. That won’t get them anywhere with us. Free software is
about freedom, and enforcing the GPL is defending freedom. When we defend
users’ freedom, we are not distracted by side issues such as how much of a distri-
bution fee is charged. Freedom is the issue, the whole issue, and the only issue.

Chapter 11: The Free Software Song 69

11 The Free Software Song

The lyrics of “The Free Software Song” are sung to the melody of the Bul-
garian folk song “Sadi moma bela loza.” To listen to a recording of the piece
accompanied by Bulgarian instruments played in traditional style, please visit
http://gnu.org/music/FreeSWSong.ogg.

��� �

free,

call,

true,

�
free,

�

you'll

at

that

you'll

be

our

is

be

�
8
7

��
ha

ha

�

ckers,

ckers,

ckers,

ckers,

���

e

get

and

�

soft

soft

mo

soft

share

nough

piles

share

�

and

�

Join

When

Hoar

Join

�

now

have

can

now

��

us

we

ders

us

�

ha

ha

�

ware;

ware

ney;

ware;

���

the

free

of

the

�

the

�
soft

��

the

ty

their

�
and

not

those

and

�
share

help

dir

share

� �

neigh-

li

soft

�

cen

�
ware;

bors;

ses

ware;

5

our

be

�
free.

true.

call,

free.

�
you'll

is

be

��

you'll

at

that

�
us

they

kick

us

� �
now

can

out

now

�� �

Join

we'll

But

Join

�

be

ver

not

be

� �
free.

good.

more.

free.

��
you'll

that's

e

you'll

�� �9

� �
be

not

ver

be

� �
free,

��
you'll

that's

e

you'll

�

ha

ha

�
��

ckers,

ckers,

ckers,

ckers,

�

good,

more,

free,

� �
ha

ha

This song is in a rhythm of 7/8; those unaccustomed to odd rhythms often take the
unevenness to be a mistake. The meter can be analyzed into three subgroups as
slow-quick-quick or 3-2-2. Such meters in Bulgarian music can often be stretched,
and some musicians analyze this song as 3-2-3 instead; however, the last “3” is not
as long as the first. Yves Moreau, who collected and taught the dance, endorses the
rhythm of 7.

Copyright c© 2010 Richard Stallman
Richard Stallman wrote the lyrics above in 1991. This version of the score is

published in Free Software, Free Society: Selected Essays of Richard M. Stallman,
2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/music/FreeSWSong.ogg

Part II:

What’s in a Name?

Chapter 12: What’s in a Name? 73

12 What’s in a Name?

Names convey meanings; our choice of names determines the meaning of what
we say. An inappropriate name gives people the wrong idea. A rose by any
other name would smell as sweet—but if you call it a pen, people will be rather
disappointed when they try to write with it. And if you call pens “roses,” people
may not realize what they are good for. If you call our operating system Linux,
that conveys a mistaken idea of the system’s origin, history, and purpose. If you
call it GNU/Linux, that conveys (though not in detail) an accurate idea.

Does this really matter for our community? Is it important whether people
know the system’s origin, history, and purpose? Yes—because people who forget
history are often condemned to repeat it. The Free World that has developed
around GNU/Linux is not guaranteed to survive; the problems that led us to
develop GNU are not completely eradicated, and they threaten to come back.

When I explain why it’s appropriate to call the operating system GNU/Linux
rather than Linux, people sometimes respond this way:

Granted that the GNU Project deserves credit for this work, is it really
worth a fuss when people don’t give credit? Isn’t the important thing that
the job was done, not who did it? You ought to relax, take pride in the job
well done, and not worry about the credit.

This would be wise advice, if only the situation were like that—if the job were
done and it were time to relax. If only that were true! But challenges abound,
and this is no time to take the future for granted. Our community’s strength
rests on commitment to freedom and cooperation. Using the name GNU/Linux
is a way for people to remind themselves and inform others of these goals.

It is possible to write good free software without thinking of GNU; much good
work has been done in the name of Linux also. But the term “Linux” has been
associated ever since it was first coined with a philosophy that does not make
a commitment to the freedom to cooperate. As the name is increasingly used
by business, we will have even more trouble making it connect with community
spirit.

To learn more about this issue, you can read our GNU/Linux FAQ, at http://gnu.
org/gnu/gnu-linux-faq.html, our page on Linux and the GNU Project, at
http://gnu.org/gnu/linux-and-gnu.html, which gives a history of the GNU/Linux
system as it relates to this issue of naming, and the article “GNU Users Who Have
Never Heard of GNU,” at http://gnu.org/gnu/gnu-users-never-heard-of-gnu.
html.

Copyright c© 2000, 2006, 2007 Richard Stallman
This essay was originally published on http://gnu.org, in 2000. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/gnu/gnu-linux-faq.html
http://gnu.org/gnu/gnu-linux-faq.html
http://gnu.org/gnu/linux-and-gnu.html
http://gnu.org/gnu/gnu-users-never-heard-of-gnu.html
http://gnu.org/gnu/gnu-users-never-heard-of-gnu.html
http://gnu.org

74 Free Software, Free Society, 2nd ed.

A great challenge to the future of free software comes from the tendency
of the “Linux” distribution companies to add nonfree software to GNU/Linux
in the name of convenience and power. All the major commercial distribution
developers do this; none limits itself to free software. Most of them do not clearly
identify the nonfree packages in their distributions. Many even develop nonfree
software and add it to the system. Some outrageously advertise “Linux” systems
that are “licensed per seat,” which give the user as much freedom as Microsoft
Windows.

People try to justify adding nonfree software in the name of the “popularity
of Linux”—in effect, valuing popularity above freedom. Sometimes this is openly
admitted. For instance, Wired magazine said that Robert McMillan, editor of
Linux Magazine, “feels that the move toward open source software should be fu-
eled by technical, rather than political, decisions.”1 And Caldera’s CEO openly
urged users to drop the goal of freedom and work instead for the “popularity of
Linux.”

Adding nonfree software to the GNU/Linux system may increase the popu-
larity, if by popularity we mean the number of people using some of GNU/Linux
in combination with nonfree software. But at the same time, it implicitly en-
courages the community to accept nonfree software as a good thing, and forget
the goal of freedom. It is not good to drive faster if you can’t stay on the road.

When the nonfree “add-on” is a library or programming tool, it can become a
trap for free software developers. When they write free software that depends on
the nonfree package, their software cannot be part of a completely free system.
Motif and Qt trapped large amounts of free software in this way in the past,
creating problems whose solutions took years. Motif remained somewhat of a
problem until it became obsolete and was no longer used. Later, Sun’s nonfree
Java implementation had a similar effect: the Java Trap, fortunately now mostly
corrected.

If our community keeps moving in this direction, it could redirect the future
of GNU/Linux into a mosaic of free and nonfree components. Five years from
now, we will surely still have plenty of free software; but if we are not careful,
it will hardly be usable without the nonfree software that users expect to find
with it. If this happens, our campaign for freedom will have failed.

If releasing free alternatives were simply a matter of programming, solving
future problems might become easier as our community’s development resources
increase. But we face obstacles that threaten to make this harder: laws that
prohibit free software. As software patents mount up, and as laws like the Digital
Millennium Copyright Act are used to prohibit the development of free software
for important jobs such as viewing a DVD or listening to a RealAudio stream,
we will find ourselves with no clear way to fight the patented and secret data
formats except to reject the nonfree programs that use them.

Meeting these challenges will require many different kinds of effort. But
what we need above all, to confront any kind of challenge, is to remember the

1 Michelle Finley, “French Pols Say, ‘Open It Up,’ ” 24 April 2000, http://wired.
com/politics/law/news/2000/04/35862.

http://wired.com/politics/law/news/2000/04/35862
http://wired.com/politics/law/news/2000/04/35862

Chapter 12: What’s in a Name? 75

goal of freedom to cooperate. We can’t expect a mere desire for powerful, re-
liable software to motivate people to make great efforts. We need the kind
of determination that people have when they fight for their freedom and their
community—determination to keep on for years and not give up.

In our community, this goal and this determination emanate mainly from
the GNU Project. We’re the ones who talk about freedom and community as
something to stand firm for; the organizations that speak of “Linux” normally
don’t say this. The magazines about “Linux” are typically full of ads for non-
free software; the companies that package “Linux” add nonfree software to the
system; other companies “support Linux” by developing nonfree applications to
run on GNU/Linux; the user groups for “Linux” typically invite salesmen to
present those applications. The main place people in our community are likely
to come across the idea of freedom and determination is in the GNU Project.

But when people come across it, will they feel it relates to them?
People who know they are using a system that came out of the GNU Project

can see a direct relationship between themselves and GNU. They won’t auto-
matically agree with our philosophy, but at least they will see a reason to think
seriously about it. In contrast, people who consider themselves “Linux users,”
and believe that the GNU Project “developed tools which proved to be useful
in Linux,” typically perceive only an indirect relationship between GNU and
themselves. They may just ignore the GNU philosophy when they come across
it.

The GNU Project is idealistic, and anyone encouraging idealism today faces
a great obstacle: the prevailing ideology encourages people to dismiss idealism
as “impractical.” Our idealism has been extremely practical: it is the reason we
have a free GNU/Linux operating system. People who love this system ought
to know that it is our idealism made real.

If “the job” really were done, if there were nothing at stake except credit,
perhaps it would be wiser to let the matter drop. But we are not in that position.
To inspire people to do the work that needs to be done, we need to be recognized
for what we have already done. Please help us, by calling the operating system
GNU/Linux.

Chapter 13: Categories of Free and Nonfree Software 77

13 Categories of Free and Nonfree Software

GP

software under GPL

open source software

copylefted software

software under lax permissive license

 software under
lax permissive license

public

open source software

free software

proprietary software

public domain software
 (without source)

shareware

free-download software

public domain software
 (with source)

This diagram, originally by Chao-Kuei and updated by several others since,
explains the different categories of software. It’s available at http://gnu.
org/philosophy/categories.html as a Scalable Vector Graphic and as an
XFig document, under the terms of any of the GNU GPL v2 or later,
the GNU FDL v1.2 or later, or the Creative Commons Attribution-Share
Alike v2.0 or later. To view a copy of the Creative Commons license,
visit http://creativecommons.org/licenses/by-sa/2.0, or send a letter
to Creative Commons, 171 Second Street, Suite 300, San Francisco, Cali-
fornia 94105, USA.

Free Software

Free software is software that comes with permission for anyone to use, copy,
and/or distribute, either verbatim or with modifications, either gratis or for
a fee. In particular, this means that source code must be available. “If it’s

Copyright c© 1996, 1997, 1998, 2001, 2006, 2007, 2009, 2010 Free Software
Foundation, Inc.

This list was originally published on http://gnu.org, in 1996. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org/philosophy/categories.html
http://gnu.org/philosophy/categories.html
http://creativecommons.org/licenses/by-sa/2.0
http://gnu.org

78 Free Software, Free Society, 2nd ed.

not source, it’s not software.” This is a simplified description; see also the full
definition (p. 3).

If a program is free, then it can potentially be included in a free operating
system such as GNU, or free versions of the GNU/Linux system.

There are many different ways to make a program free—many questions of
detail, which could be decided in more than one way and still make the program
free. Some of the possible variations are described below. For information on
specific free software licenses, see the license list page, at http://gnu.org/

licenses/license-list.html.
Free software is a matter of freedom, not price. But proprietary software

companies typically use the term “free software” to refer to price. Sometimes
they mean that you can obtain a binary copy at no charge; sometimes they
mean that a copy is bundled with a computer that you are buying, and the
price includes both. Either way, it has nothing to do with what we mean by free
software in the GNU Project.

Because of this potential confusion, when a software company says its product
is free software, always check the actual distribution terms to see whether users
really have all the freedoms that free software implies. Sometimes it really is
free software; sometimes it isn’t.

Many languages have two separate words for “free” as in freedom and “free”
as in zero price. For example, French has “libre” and “gratuit.” Not so English;
there is a word “gratis” that refers unambiguously to price, but no common
adjective that refers unambiguously to freedom. So if you are speaking another
language, we suggest you translate “free” into your language to make it clearer.
See our list of translations of the term “free software” into various other lan-
guages (p. 253).

Free software is often more reliable than nonfree software.

Open Source Software

The term “open source” software is used by some people to mean more or less
the same category as free software. It is not exactly the same class of software:
they accept some licenses that we consider too restrictive, and there are free
software licenses they have not accepted. However, the differences in extension
of the category are small: nearly all free software is open source, and nearly all
open source software is free.

We prefer the term “free software” because it refers to freedom—something
that the term “open source” does not do.

Public Domain Software

Public domain software is software that is not copyrighted. If the source code is
in the public domain, that is a special case of noncopylefted free software, which
means that some copies or modified versions may not be free at all.

In some cases, an executable program can be in the public domain but the
source code is not available. This is not free software, because free software
requires accessibility of source code. Meanwhile, most free software is not in the

http://gnu.org/licenses/license-list.html
http://gnu.org/licenses/license-list.html

Chapter 13: Categories of Free and Nonfree Software 79

public domain; it is copyrighted, and the copyright holders have legally given
permission for everyone to use it in freedom, using a free software license.

Sometimes people use the term “public domain” in a loose fashion to mean
“free” or “available gratis.” However, “public domain” is a legal term and means,
precisely, “not copyrighted.” For clarity, we recommend using “public domain”
for that meaning only, and using other terms to convey the other meanings.

Under the Berne Convention, which most countries have signed, anything
written down is automatically copyrighted. This includes programs. Therefore,
if you want a program you have written to be in the public domain, you must
take some legal steps to disclaim the copyright on it; otherwise, the program is
copyrighted.

Copylefted Software

Copylefted software is free software whose distribution terms ensure that all
copies of all versions carry more or less the same distribution terms. This means,
for instance, that copyleft licenses generally disallow others to add additional
requirements to the software (though a limited set of safe added requirements
can be allowed) and require making source code available. This shields the
program, and its modified versions, from some of the common ways of making
a program proprietary.

Some copyleft licenses, such as GPL version 3, block other means of turning
software proprietary, such as tivoization.

In the GNU Project, we copyleft almost all the software we write, because
our goal is to give every user the freedoms implied by the term “free software.”
See the essay “Copyleft” (p. 127) for more explanation of how copyleft works
and why we use it.

Copyleft is a general concept; to copyleft an actual program, you need to
use a specific set of distribution terms. There are many possible ways to write
copyleft distribution terms, so in principle there can be many copyleft free soft-
ware licenses. However, in actual practice nearly all copylefted software uses
the GNU General Public License. Two different copyleft licenses are usually
“incompatible,” which means it is illegal to merge the code using one license
with the code using the other license; therefore, it is good for the community if
people use a single copyleft license.

Noncopylefted Free Software

Noncopylefted free software comes from the author with permission to redis-
tribute and modify, and also to add additional restrictions to it.

If a program is free but not copylefted, then some copies or modified versions
may not be free at all. A software company can compile the program, with
or without modifications, and distribute the executable file as a proprietary
software product.

The X Window System illustrates this. The X Consortium releases X11 with
distribution terms that make it noncopylefted free software. If you wish, you can
get a copy which has those distribution terms and is free. However, there are

80 Free Software, Free Society, 2nd ed.

nonfree versions as well, and there are (or at least were) popular workstations
and PC graphics boards for which nonfree versions are the only ones that work.
If you are using this hardware, X11 is not free software for you. The developers
of X11 even made X11 nonfree for a while; they were able to do this because
others had contributed their code under the same noncopyleft license.

Lax Permissive Licensed Software

Lax permissive licenses include the X11 license and the two BSD licenses. These
licenses permit almost any use of the code, including distributing proprietary
binaries with or without changing the source code.

GPL-Covered Software

The GNU GPL (General Public License) is one specific set of distribution terms
for copylefting a program. The GNU Project uses it as the distribution terms
for most GNU software.

To equate free software with GPL-covered software is therefore an error.

The GNU Operating System

The GNU operating system is the Unix-like operating system, which is entirely
free software, that we in the GNU Project have developed since 1984.

A Unix-like operating system consists of many programs. The GNU system
includes all the GNU software, as well as many other packages, such as the X
Window System and TEX, which are not GNU software.

The first test release of the complete GNU system was in 1996. This includes
the GNU Hurd, our kernel, developed since 1990. In 2001 the GNU system
(including the GNU Hurd) began working fairly reliably, but the Hurd still lacks
some important features, so it is not widely used. Meanwhile, the GNU/Linux
system, an offshoot of the GNU operating system which uses Linux as the kernel
instead of the GNU Hurd, has been a great success since the 90s.

Since the purpose of GNU is to be free, every single component in the GNU
operating system has to be free software. They don’t all have to be copylefted,
however; any kind of free software is legally suitable to include if it helps meet
technical goals. And it isn’t necessary for all the components to be GNU soft-
ware, individually. GNU can and does include noncopylefted free software such
as the X Window System that were developed by other projects.

GNU Programs

“GNU programs” is equivalent to GNU software. A program Foo is a GNU
program if it is GNU software. We also sometimes say it is a “GNU package.”

GNU Software

GNU software is software that is released under the auspices of the GNU Project.
If a program is GNU software, we also say that it is a GNU program or a GNU
package. The README or manual of a GNU package should say it is one; also,

Chapter 13: Categories of Free and Nonfree Software 81

the Free Software Directory identifies all GNU packages.
Most GNU software is copylefted, but not all; however, all GNU software

must be free software.
Some GNU software was written by staff of the Free Software Foundation,

but most GNU software comes from many volunteers. (Some of these volunteers
are paid by companies or universities, but they are volunteers for us.) Some
contributed software is copyrighted by the Free Software Foundation; some is
copyrighted by the contributors who wrote it.

Nonfree Software

Nonfree software is any software that is not free. Its use, redistribution or
modification is prohibited, or requires you to ask for permission, or is restricted
so much that you effectively can’t do it freely.

Proprietary Software

Proprietary software is another name for nonfree software. In the past we sub-
divided nonfree software into “semifree software,” which could be modified and
redistributed noncommercially, and “proprietary software,” which could not be.
But we have dropped that distinction and now use “proprietary software” as
synonymous with nonfree software.

The Free Software Foundation follows the rule that we cannot install any
proprietary program on our computers except temporarily for the specific pur-
pose of writing a free replacement for that very program. Aside from that, we
feel there is no possible excuse for installing a proprietary program.

For example, we felt justified in installing Unix on our computer in the 1980s,
because we were using it to write a free replacement for Unix. Nowadays, since
free operating systems are available, the excuse is no longer applicable; we do
not use any nonfree operating systems, and any new computer we install must
run a completely free operating system.

We don’t insist that users of GNU, or contributors to GNU, have to live by
this rule. It is a rule we made for ourselves. But we hope you will follow it too,
for your freedom’s sake.

Freeware

The term “freeware” has no clear accepted definition, but it is commonly used
for packages which permit redistribution but not modification (and their source
code is not available). These packages are not free software, so please don’t use
“freeware” to refer to free software.

Shareware

Shareware is software which comes with permission for people to redistribute
copies, but says that anyone who continues to use a copy is required to pay a
license fee.

Shareware is not free software, or even semifree. There are two reasons it is
not:

82 Free Software, Free Society, 2nd ed.

• For most shareware, source code is not available; thus, you cannot modify
the program at all.

• Shareware does not come with permission to make a copy and install it
without paying a license fee, not even for individuals engaging in nonprofit
activity. (In practice, people often disregard the distribution terms and do
this anyway, but the terms don’t permit it.)

Private Software

Private or custom software is software developed for one user (typically an or-
ganization or company). That user keeps it and uses it, and does not release it
to the public either as source code or as binaries.

A private program is free software in a trivial sense if its sole user has full
rights to it.

In general we do not believe it is wrong to develop a program and not release
it. There are occasions when a program is so useful that withholding it from
release is treating humanity badly. However, most programs are not that impor-
tant, so not releasing them is not particularly harmful. Thus, there is no conflict
between the development of private or custom software and the principles of the
free software movement.

Nearly all employment for programmers is in development of custom software;
therefore most programming jobs are, or could be, done in a way compatible with
the free software movement.

Commercial Software

Commercial software is software being developed by a business which aims to
make money from the use of the software. “Commercial” and “proprietary”
are not the same thing! Most commercial software is proprietary, but there is
commercial free software, and there is noncommercial nonfree software.

For example, GNU Ada is developed by a company. It is always distributed
under the terms of the GNU GPL, and every copy is free software; but its
developers sell support contracts. When their salesmen speak to prospective
customers, sometimes the customers say, “We would feel safer with a commercial
compiler.” The salesmen reply, “GNU Ada is a commercial compiler; it happens
to be free software.”

For the GNU Project, the emphasis is in the other order: the important
thing is that GNU Ada is free software; whether it is commercial is just a detail.
However, the additional development of GNU Ada that results from its being
commercial is definitely beneficial.

Please help spread the awareness that free commercial software is possible.
You can do this by making an effort not to say “commercial” when you mean
“proprietary.”

Chapter 14: Why Open Source Misses the Point of Free Software 83

14 Why Open Source Misses the Point of

Free Software

When we call software “free,” we mean that it respects the users’ essential free-
doms: the freedom to run it, to study and change it, and to redistribute copies
with or without changes. This is a matter of freedom, not price, so think of “free
speech,” not “free beer.”

These freedoms are vitally important. They are essential, not just for the
individual users’ sake, but for society as a whole because they promote social
solidarity—that is, sharing and cooperation. They become even more important
as our culture and life activities are increasingly digitized. In a world of digi-
tal sounds, images, and words, free software becomes increasingly essential for
freedom in general.

Tens of millions of people around the world now use free software; the public
schools of some regions of India and Spain now teach all students to use the free
GNU/Linux operating system. Most of these users, however, have never heard
of the ethical reasons for which we developed this system and built the free
software community, because nowadays this system and community are more
often spoken of as “open source,” attributing them to a different philosophy in
which these freedoms are hardly mentioned.

The free software movement has campaigned for computer users’ freedom
since 1983. In 1984 we launched the development of the free operating system
GNU, so that we could avoid the nonfree operating systems that deny freedom
to their users. During the 1980s, we developed most of the essential components
of the system and designed the GNU General Public License (GNU GPL) to
release them under—a license designed specifically to protect freedom for all
users of a program.

Not all of the users and developers of free software agreed with the goals
of the free software movement. In 1998, a part of the free software community
splintered off and began campaigning in the name of “open source.” The term
was originally proposed to avoid a possible misunderstanding of the term “free
software,” but it soon became associated with philosophical views quite different
from those of the free software movement.

Some of the supporters of open source considered the term a “marketing
campaign for free software,” which would appeal to business executives by high-
lighting the software’s practical benefits, while not raising issues of right and
wrong that they might not like to hear. Other supporters flatly rejected the
free software movement’s ethical and social values. Whichever their views, when

Copyright c© 2007, 2008, 2010 Richard Stallman
This essay was originally published on http://gnu.org, in 2007. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

84 Free Software, Free Society, 2nd ed.

campaigning for open source, they neither cited nor advocated those values. The
term “open source” quickly became associated with ideas and arguments based
only on practical values, such as making or having powerful, reliable software.
Most of the supporters of open source have come to it since then, and they make
the same association.

Nearly all open source software is free software. The two terms describe
almost the same category of software, but they stand for views based on fun-
damentally different values. Open source is a development methodology; free
software is a social movement. For the free software movement, free software
is an ethical imperative, because only free software respects the users’ freedom.
By contrast, the philosophy of open source considers issues in terms of how to
make software “better”—in a practical sense only. It says that nonfree software
is an inferior solution to the practical problem at hand. For the free software
movement, however, nonfree software is a social problem, and the solution is to
stop using it and move to free software.

“Free software.” “Open source.” If it’s the same software, does it matter
which name you use? Yes, because different words convey different ideas. While
a free program by any other name would give you the same freedom today,
establishing freedom in a lasting way depends above all on teaching people to
value freedom. If you want to help do this, it is essential to speak of “free
software.”

We in the free software movement don’t think of the open source camp as
an enemy; the enemy is proprietary (nonfree) software. But we want people to
know we stand for freedom, so we do not accept being mislabeled as open source
supporters.

Common Misunderstandings of “Free Software” and “Open Source”

The term “free software” is prone to misinterpretation: an unintended meaning,
“software you can get for zero price,” fits the term just as well as the intended
meaning, “software which gives the user certain freedoms.” We address this
problem by publishing the definition of free software, and by saying, “Think of
‘free speech,’ not ‘free beer.’ ” This is not a perfect solution; it cannot completely
eliminate the problem. An unambiguous and correct term would be better, if it
didn’t present other problems.

Unfortunately, all the alternatives in English have problems of their own.
We’ve looked at many that people have suggested, but none is so clearly “right”
that switching to it would be a good idea. (For instance, in some contexts
the French and Spanish word “libre” works well, but people in India do not
recognize it at all.) Every proposed replacement for “free software” has some
kind of semantic problem—and this includes “open source software.”

The official definition of “open source software”1 (which is published by the
Open Source Initiative and is too long to include here) was derived indirectly
from our criteria for free software. It is not the same; it is a little looser in

1 See http://opensource.org/docs/osd for the full definition.

http://opensource.org/docs/osd

Chapter 14: Why Open Source Misses the Point of Free Software 85

some respects, so the open source people have accepted a few licenses that we
consider unacceptably restrictive. Also, they judge solely by the license of the
source code, whereas our criterion also considers whether a device will let you
run your modified version of the program. Nonetheless, their definition agrees
with our definition in most cases.

However, the obvious meaning for the expression “open source software”—
and the one most people seem to think it means—is “You can look at the source
code.” That criterion is much weaker than the free software definition, much
weaker also than the official definition of open source. It includes many programs
that are neither free nor open source.

Since that obvious meaning for “open source” is not the meaning that its
advocates intend, the result is that most people misunderstand the term. Ac-
cording to writer Neal Stephenson, “Linux is ‘open source’ software, meaning
simply, anyone can get copies of its source code files.”2 I don’t think he delib-
erately sought to reject or dispute the “official” definition. I think he simply
applied the conventions of the English language to come up with a meaning
for the term. The state of Kansas published a similar definition: “Make use of
open-source software (OSS). OSS is software for which the source code is freely
and publicly available, though the specific licensing agreements vary as to what
one is allowed to do with that code.”

The New York Times has run an article that stretches the meaning of the
term to refer to user beta testing3—letting a few users try an early version and
give confidential feedback—which proprietary software developers have practiced
for decades.

Open source supporters try to deal with this by pointing to their official
definition, but that corrective approach is less effective for them than it is for
us. The term “free software” has two natural meanings, one of which is the
intended meaning, so a person who has grasped the idea of “free speech, not
free beer” will not get it wrong again. But the term “open source” has only one
natural meaning, which is different from the meaning its supporters intend. So
there is no succinct way to explain and justify its official definition. That makes
for worse confusion.

Another misunderstanding of “open source” is the idea that it means “not
using the GNU GPL.” This tends to accompany another misunderstanding that
“free software” means “GPL-covered software.” These are both mistaken, since
the GNU GPL qualifies as an open source license and most of the open source
licenses qualify as free software licenses.

The term “open source” has been further stretched by its application to other
activities, such as government, education, and science, where there is no such

2 Neal Stephenson, In the Beginning...Was the Command Line (New York:
HarperCollins Publishers, 1999), p. 94.

3 Mary Jane Irwin, “The Brave New World of Open-Source Game Design,” New
York Times, online ed., 7 February 2009, http://www.nytimes.com/external/
gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-

design-37415.html.

http://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
http://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html
http://www.nytimes.com/external/gigaom/2009/02/07/07gigaom-the-brave-new-world-of-open-source-game-design-37415.html

86 Free Software, Free Society, 2nd ed.

thing as source code, and where criteria for software licensing are simply not
pertinent. The only thing these activities have in common is that they somehow
invite people to participate. They stretch the term so far that it only means
“participatory.”

Different Values Can Lead to Similar Conclusions. . .but

Not Always

Radical groups in the 1960s had a reputation for factionalism: some organiza-
tions split because of disagreements on details of strategy, and the two daughter
groups treated each other as enemies despite having similar basic goals and
values. The right wing made much of this and used it to criticize the entire left.

Some try to disparage the free software movement by comparing our dis-
agreement with open source to the disagreements of those radical groups. They
have it backwards. We disagree with the open source camp on the basic goals
and values, but their views and ours lead in many cases to the same practical
behavior—such as developing free software.

As a result, people from the free software movement and the open source
camp often work together on practical projects such as software development. It
is remarkable that such different philosophical views can so often motivate differ-
ent people to participate in the same projects. Nonetheless, there are situations
where these fundamentally different views lead to very different actions.

The idea of open source is that allowing users to change and redistribute the
software will make it more powerful and reliable. But this is not guaranteed.
Developers of proprietary software are not necessarily incompetent. Sometimes
they produce a program that is powerful and reliable, even though it does not
respect the users’ freedom. Free software activists and open source enthusiasts
will react very differently to that.

A pure open source enthusiast, one that is not at all influenced by the ideals
of free software, will say, “I am surprised you were able to make the program
work so well without using our development model, but you did. How can I get
a copy?” This attitude will reward schemes that take away our freedom, leading
to its loss.

The free software activist will say, “Your program is very attractive, but I
value my freedom more. So I reject your program. Instead I will support a
project to develop a free replacement.” If we value our freedom, we can act to
maintain and defend it.

Powerful, Reliable Software Can Be Bad

The idea that we want software to be powerful and reliable comes from the
supposition that the software is designed to serve its users. If it is powerful and
reliable, that means it serves them better.

But software can be said to serve its users only if it respects their freedom.
What if the software is designed to put chains on its users? Then powerfulness
means the chains are more constricting, and reliability that they are harder to
remove. Malicious features, such as spying on the users, restricting the users,

Chapter 14: Why Open Source Misses the Point of Free Software 87

back doors, and imposed upgrades are common in proprietary software, and
some open source supporters want to implement them in open source programs.

Under pressure from the movie and record companies, software for in-
dividuals to use is increasingly designed specifically to restrict them. This
malicious feature is known as Digital Restrictions Management (DRM) (see
http://defectivebydesign.org) and is the antithesis in spirit of the freedom
that free software aims to provide. And not just in spirit: since the goal of DRM
is to trample your freedom, DRM developers try to make it hard, impossible, or
even illegal for you to change the software that implements the DRM.

Yet some open source supporters have proposed “open source DRM” soft-
ware. Their idea is that, by publishing the source code of programs designed
to restrict your access to encrypted media and by allowing others to change it,
they will produce more powerful and reliable software for restricting users like
you. The software would then be delivered to you in devices that do not allow
you to change it.

This software might be open source and use the open source development
model, but it won’t be free software since it won’t respect the freedom of the
users that actually run it. If the open source development model succeeds in
making this software more powerful and reliable for restricting you, that will
make it even worse.

Fear of Freedom

The main initial motivation of those who split off the open source camp from the
free software movement was that the ethical ideas of “free software” made some
people uneasy. That’s true: raising ethical issues such as freedom, talking about
responsibilities as well as convenience, is asking people to think about things
they might prefer to ignore, such as whether their conduct is ethical. This can
trigger discomfort, and some people may simply close their minds to it. It does
not follow that we ought to stop talking about these issues.

That is, however, what the leaders of open source decided to do. They
figured that by keeping quiet about ethics and freedom, and talking only about
the immediate practical benefits of certain free software, they might be able to
“sell” the software more effectively to certain users, especially business.

This approach has proved effective, in its own terms. The rhetoric of open
source has convinced many businesses and individuals to use, and even develop,
free software, which has extended our community—but only at the superficial,
practical level. The philosophy of open source, with its purely practical values,
impedes understanding of the deeper ideas of free software; it brings many people
into our community, but does not teach them to defend it. That is good, as far
as it goes, but it is not enough to make freedom secure. Attracting users to free
software takes them just part of the way to becoming defenders of their own
freedom.

Sooner or later these users will be invited to switch back to proprietary
software for some practical advantage. Countless companies seek to offer such
temptation, some even offering copies gratis. Why would users decline? Only if

http://defectivebydesign.org

88 Free Software, Free Society, 2nd ed.

they have learned to value the freedom free software gives them, to value freedom
in and of itself rather than the technical and practical convenience of specific free
software. To spread this idea, we have to talk about freedom. A certain amount
of the “keep quiet” approach to business can be useful for the community, but
it is dangerous if it becomes so common that the love of freedom comes to seem
like an eccentricity.

That dangerous situation is exactly what we have. Most people involved
with free software, especially its distributors, say little about freedom—usually
because they seek to be “more acceptable to business.” Nearly all GNU/Linux
operating system distributions add proprietary packages to the basic free system,
and they invite users to consider this an advantage rather than a flaw.

Proprietary add-on software and partially nonfree GNU/Linux distributions
find fertile ground because most of our community does not insist on freedom
with its software. This is no coincidence. Most GNU/Linux users were intro-
duced to the system through “open source” discussion, which doesn’t say that
freedom is a goal. The practices that don’t uphold freedom and the words that
don’t talk about freedom go hand in hand, each promoting the other. To over-
come this tendency, we need more, not less, talk about freedom.

Conclusion

As the advocates of open source draw new users into our community, we free
software activists must shoulder the task of bringing the issue of freedom to their
attention. We have to say, “It’s free software and it gives you freedom!”—more
and louder than ever. Every time you say “free software” rather than “open
source,” you help our campaign.

Notes

• Joe Barr’s article “Live and Let License” (ITworld.com, 22 May 2001,
http://www.itworld.com/LWD010523vcontrol4) gives his perspective on
this issue.

• Karim R. Lakhani and Robert G. Wolf’s paper on the motivation of free
software developers (“Why Hackers Do What They Do: Understanding Mo-
tivation and Effort in Free/Open Source Software Projects,” in Perspectives
on Free and Open Source Software, edited by J. Feller and others (Cam-
bridge: MIT Press, 2005)) says that a considerable fraction are motivated
by the view that software should be free. This is despite the fact that they
surveyed the developers on SourceForge, a site that does not support the
view that this is an ethical issue.

http://www.itworld.com/LWD010523vcontrol4

Chapter 15: Did You Say “Intellectual Property”? It’s a Seductive Mirage 89

15 Did You Say “Intellectual Property”? It’s a

Seductive Mirage

It has become fashionable to toss copyright, patents, and trademarks—three sep-
arate and different entities involving three separate and different sets of laws—
plus a dozen other laws into one pot and call it “intellectual property.” The
distorting and confusing term did not become common by accident. Companies
that gain from the confusion promoted it. The clearest way out of the confusion
is to reject the term entirely.

According to Professor Mark Lemley, now of the Stanford Law School, the
widespread use of the term “intellectual property” is a fashion that followed
the 1967 founding of the World “Intellectual Property” Organization (WIPO),
and only became really common in recent years. (WIPO is formally a UN
organization, but in fact represents the interests of the holders of copyrights,
patents, and trademarks.)

The term carries a bias that is not hard to see: it suggests thinking about
copyright, patents and trademarks by analogy with property rights for physical
objects. (This analogy is at odds with the legal philosophies of copyright law,
of patent law, and of trademark law, but only specialists know that.) These
laws are in fact not much like physical property law, but use of this term leads
legislators to change them to be more so. Since that is the change desired by
the companies that exercise copyright, patent and trademark powers, the bias
introduced by the term “intellectual property” suits them.

The bias is reason enough to reject the term, and people have often asked me
to propose some other name for the overall category—or have proposed their own
alternatives (often humorous). Suggestions include IMPs, for Imposed Monopoly
Privileges, and GOLEMs, for Government-Originated Legally Enforced Monop-
olies. Some speak of “exclusive rights regimes,” but referring to restrictions as
“rights” is doublethink too.

Some of these alternative names would be an improvement, but it is a mistake
to replace “intellectual property” with any other term. A different name will
not address the term’s deeper problem: overgeneralization. There is no such
unified thing as “intellectual property”—it is a mirage. The only reason people
think it makes sense as a coherent category is that widespread use of the term
has misled them.

The term “intellectual property” is at best a catch-all to lump together dis-
parate laws. Nonlawyers who hear one term applied to these various laws tend
to assume they are based on a common principle and function similarly.

Copyright c© 2004, 2006, 2007, 2009, 2010 Richard Stallman
This article was written in 2004 and published in Policy Futures in Education,

vol. 4, n. 4, pp. 334–336, 2006. This version is part of Free Software, Free Society:
Selected Essays of Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

90 Free Software, Free Society, 2nd ed.

Nothing could be further from the case. These laws originated separately,
evolved differently, cover different activities, have different rules, and raise dif-
ferent public policy issues.

Copyright law was designed to promote authorship and art, and covers the
details of expression of a work. Patent law was intended to promote the pub-
lication of useful ideas, at the price of giving the one who publishes an idea a
temporary monopoly over it—a price that may be worth paying in some fields
and not in others.

Trademark law, by contrast, was not intended to promote any particular way
of acting, but simply to enable buyers to know what they are buying. Legislators
under the influence of the term “intellectual property,” however, have turned it
into a scheme that provides incentives for advertising.

Since these laws developed independently, they are different in every detail,
as well as in their basic purposes and methods. Thus, if you learn some fact
about copyright law, you’d be wise to assume that patent law is different. You’ll
rarely go wrong!

People often say “intellectual property” when they really mean some larger or
smaller category. For instance, rich countries often impose unjust laws on poor
countries to squeeze money out of them. Some of these laws are “intellectual
property” laws, and others are not; nonetheless, critics of the practice often
grab for that label because it has become familiar to them. By using it, they
misrepresent the nature of the issue. It would be better to use an accurate term,
such as “legislative colonization,” that gets to the heart of the matter.

Laymen are not alone in being confused by this term. Even law professors
who teach these laws are lured and distracted by the seductiveness of the term
“intellectual property,” and make general statements that conflict with facts
they know. For example, one professor wrote in 2006:

Unlike their descendants who now work the floor at WIPO, the framers of
the US constitution had a principled, procompetitive attitude to intellectual
property. They knew rights might be necessary, but. . . they tied congress’s
hands, restricting its power in multiple ways.

That statement refers to Article I, Section 8, Clause 8, of the US Constitution,
which authorizes copyright law and patent law. That clause, though, has nothing
to do with trademark law or various others. The term “intellectual property”
led that professor to make false generalization.

The term “intellectual property” also leads to simplistic thinking. It leads
people to focus on the meager commonality in form that these disparate laws
have—that they create artificial privileges for certain parties—and to disregard
the details which form their substance: the specific restrictions each law places
on the public, and the consequences that result. This simplistic focus on the
form encourages an “economistic” approach to all these issues.

Economics operates here, as it often does, as a vehicle for unexamined as-
sumptions. These include assumptions about values, such as that amount of pro-
duction matters while freedom and way of life do not, and factual assumptions

Chapter 15: Did You Say “Intellectual Property”? It’s a Seductive Mirage 91

which are mostly false, such as that copyrights on music supports musicians, or
that patents on drugs support life-saving research.

Another problem is that, at the broad scale implicit in the term “intellectual
property,” the specific issues raised by the various laws become nearly invisible.
These issues arise from the specifics of each law—precisely what the term “intel-
lectual property” encourages people to ignore. For instance, one issue relating
to copyright law is whether music sharing should be allowed; patent law has
nothing to do with this. Patent law raises issues such as whether poor countries
should be allowed to produce life-saving drugs and sell them cheaply to save
lives; copyright law has nothing to do with such matters.

Neither of these issues is solely economic in nature, and their noneconomic
aspects are very different; using the shallow economic overgeneralization as the
basis for considering them means ignoring the differences. Putting the two laws
in the “intellectual property” pot obstructs clear thinking about each one.

Thus, any opinions about “the issue of intellectual property” and any gener-
alizations about this supposed category are almost surely foolish. If you think all
those laws are one issue, you will tend to choose your opinions from a selection
of sweeping overgeneralizations, none of which is any good.

If you want to think clearly about the issues raised by patents, or copyrights,
or trademarks, or various other different laws, the first step is to forget the idea
of lumping them together, and treat them as separate topics. The second step
is to reject the narrow perspectives and simplistic picture the term “intellectual
property” suggests. Consider each of these issues separately, in its fullness, and
you have a chance of considering them well.

And when it comes to reforming WIPO, among other things let’s call for
changing its name.

Chapter 16: Words to Avoid (or Use with Care) 93

16 Words to Avoid (or Use with Care)

Because They Are Loaded or Confusing

There are a number of words and phrases that we recommend avoiding, or avoid-
ing in certain contexts and usages. Some are ambiguous or misleading; others
presuppose a viewpoint that we hope you disagree with. (See also “Categories
of Free and Nonfree Software,” on p. 77.)

BSD-Style

The expression “BSD-style license” leads to confusion because it lumps together
licenses that have important differences. For instance, the original BSD license
with the advertising clause is incompatible with the GNU General Public Li-
cense, but the revised BSD license is compatible with the GPL.

To avoid confusion, it is best to name the specific license in question and
avoid the vague term “BSD-style.”

Closed

Describing nonfree software as “closed” clearly refers to the term “open source.”
In the free software movement, we do not want to be confused with the open
source camp, so we are careful to avoid saying things that would encourage
people to lump us in with them. For instance, we avoid describing nonfree
software as “closed.” We call it “nonfree” or “proprietary.”

Cloud Computing

The term “cloud computing” is a marketing buzzword with no clear meaning.
It is used for a range of different activities whose only common characteristic is
that they use the Internet for something beyond transmitting files. Thus, the
term is a nexus of confusion. If you base your thinking on it, your thinking will
be vague.

When thinking about or responding to a statement someone else has made
using this term, the first step is to clarify the topic. Which kind of activity is
the statement really about, and what is a good, clear term for that activity?
Once the topic is clear, the discussion can head for a useful conclusion.

Curiously, Larry Ellison, a proprietary software developer, also noted the
vacuity of the term “cloud computing.”1 He decided to use the term anyway

1 Dan Farber, “Oracle’s Ellison Nails Cloud Computing,” 26 September 2008,
http://news.cnet.com/8301-13953_3-10052188-80.html.

Copyright c© 1996, 1997, 1998, 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
2009, 2010 Free Software Foundation, Inc.

This list was first published on http://gnu.org, in 1996. This version is part
of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://news.cnet.com/8301-13953_3-10052188-80.html
http://gnu.org

94 Free Software, Free Society, 2nd ed.

because, as a proprietary software developer, he isn’t motivated by the same
ideals as we are.

Commercial

Please don’t use “commercial” as a synonym for “nonfree.” That confuses two
entirely different issues.

A program is commercial if it is developed as a business activity. A commer-
cial program can be free or nonfree, depending on its manner of distribution.
Likewise, a program developed by a school or an individual can be free or non-
free, depending on its manner of distribution. The two questions—what sort of
entity developed the program and what freedom its users have—are independent.

In the first decade of the free software movement, free software packages were
almost always noncommercial; the components of the GNU/Linux operating
system were developed by individuals or by nonprofit organizations such as the
FSF and universities. Later, in the 1990s, free commercial software started to
appear.

Free commercial software is a contribution to our community, so we should
encourage it. But people who think that “commercial” means “nonfree” will
tend to think that the “free commercial” combination is self-contradictory, and
dismiss the possibility. Let’s be careful not to use the word “commercial” in
that way.

Compensation

To speak of “compensation for authors” in connection with copyright carries the
assumptions that (1) copyright exists for the sake of authors and (2) whenever
we read something, we take on a debt to the author which we must then repay.
The first assumption is simply false, and the second is outrageous.

Consumer

The term “consumer,” when used to refer to computer users, is loaded with
assumptions we should reject. Playing a digital recording, or running a program,
does not consume it.

The terms “producer” and “consumer” come from economic theory, and bring
with them its narrow perspective and misguided assumptions. They tend to warp
your thinking.

In addition, describing the users of software as “consumers” presumes a nar-
row role for them: it regards them as cattle that passively graze on what others
make available to them.

This kind of thinking leads to travesties like the CBDTPA, the “Consumer
Broadband and Digital Television Promotion Act,” which would require copying
restriction facilities in every digital device. If all the users do is “consume,” then
why should they mind?

The shallow economic conception of users as “consumers” tends to go hand
in hand with the idea that published works are mere “content.”

Chapter 16: Words to Avoid (or Use with Care) 95

To describe people who are not limited to passive use of works, we suggest
terms such as “individuals” and “citizens.”

Content

If you want to describe a feeling of comfort and satisfaction, by all means say
you are “content,” but using the word as a noun to describe written and other
works of authorship adopts an attitude you might rather avoid. It regards these
works as a commodity whose purpose is to fill a box and make money. In effect,
it disparages the works themselves.

Those who use this term are often the publishers that push for increased
copyright power in the name of the authors (“creators,” as they say) of the works.
The term “content” reveals their real attitude towards these works and their
authors. (See Courtney Love’s open letter to Steve Case2 and search for “content
provider” in that page. Alas, Ms. Love is unaware that the term “intellectual
property” is also biased and confusing.)

However, as long as other people use the term “content provider,” political
dissidents can well call themselves “malcontent providers.”

The term “content management” takes the prize for vacuity. “Content”
means “some sort of information,” and “management” in this context means
“doing something with it.” So a “content management system” is a system
for doing something to some sort of information. Nearly all programs fit that
description.

In most cases, that term really refers to a system for updating pages on a
web site. For that, we recommend the term “web site revision system” (WRS).

Creator

The term “creator” as applied to authors implicitly compares them to a de-
ity (“the creator”). The term is used by publishers to elevate authors’ moral
standing above that of ordinary people in order to justify giving them increased
copyright power, which the publishers can then exercise in their name. We rec-
ommend saying “author” instead. However, in many cases “copyright holder” is
what you really mean.

Digital Goods

The term “digital goods,” as applied to copies of works of authorship, erro-
neously identifies them with physical goods—which cannot be copied, and which
therefore have to be manufactured and sold.

2 An unedited transcript of American rock musician Courtney Love’s 16 May 2000
speech to the Digital Hollywood online-entertainment conference, in New York, is
available at http://salon.com/technology/feature/2000/06/14/love/print.
html.

http://salon.com/technology/feature/2000/06/14/love/print.html
http://salon.com/technology/feature/2000/06/14/love/print.html

96 Free Software, Free Society, 2nd ed.

Digital Rights Management

“Digital Rights Management” refers to technical schemes designed to impose
restrictions on computer users. The use of the word “rights” in this term is pro-
paganda, designed to lead you unawares into seeing the issue from the viewpoint
of the few that impose the restrictions, and ignoring that of the general public
on whom these restrictions are imposed.

Good alternatives include “Digital Restrictions Management,” and “digital
handcuffs.”

Ecosystem

It is a mistake to describe the free software community, or any human com-
munity, as an “ecosystem,” because that word implies the absence of ethical
judgment.

The term “ecosystem” implicitly suggests an attitude of nonjudgmental ob-
servation: don’t ask how what should happen, just study and explain what does
happen. In an ecosystem, some organisms consume other organisms. We do not
ask whether it is fair for an owl to eat a mouse or for a mouse to eat a plant, we
only observe that they do so. Species’ populations grow or shrink according to
the conditions; this is neither right nor wrong, merely an ecological phenomenon.

By contrast, beings that adopt an ethical stance towards their surroundings
can decide to preserve things that, on their own, might vanish—such as civil
society, democracy, human rights, peace, public health, clean air and water,
endangered species, traditional arts. . . and computer users’ freedom.

For Free

If you want to say that a program is free software, please don’t say that it is
available “for free.” That term specifically means “for zero price.” Free software
is a matter of freedom, not price.

Free software copies are often available for free—for example, by downloading
via FTP. But free software copies are also available for a price on CD-ROMs;
meanwhile, proprietary software copies are occasionally available for free in pro-
motions, and some proprietary packages are normally available at no charge to
certain users.

To avoid confusion, you can say that the program is available “as free soft-
ware.”

Freely Available

Don’t use “freely available software” as a synonym for “free software.” The
terms are not equivalent. Software is “freely available” if anyone can easily get
a copy. “Free software” is defined in terms of the freedom of users that have a
copy of it. These are answers to different questions.

Chapter 16: Words to Avoid (or Use with Care) 97

Freeware

Please don’t use the term “freeware” as a synonym for “free software.” The term
“freeware” was used often in the 1980s for programs released only as executables,
with source code not available. Today it has no particular agreed-on definition.

When using languages other than English, please avoid borrowing English
terms such as “free software” or “freeware.” It is better to translate the term
“free software” into your language. (Please see p. 253 for a list of recommended
unambiguous translations for the term “free software” into various languages.)

By using a word in your own language, you show that you are really referring
to freedom and not just parroting some mysterious foreign marketing concept.
The reference to freedom may at first seem strange or disturbing to your com-
patriots, but once they see that it means exactly what it says, they will really
understand what the issue is.

Give Away Software

It’s misleading to use the term “give away” to mean “distribute a program as
free software.” This locution has the same problem as “for free”: it implies the
issue is price, not freedom. One way to avoid the confusion is to say “release as
free software.”

Hacker

A hacker is someone who enjoys playful cleverness3—not necessarily with com-
puters. The programmers in the old MIT free software community of the 60s and
70s referred to themselves as hackers. Around 1980, journalists who discovered
the hacker community mistakenly took the term to mean “security breaker.”

Please don’t spread this mistake. People who break security are “crackers.”

Intellectual Property

Publishers and lawyers like to describe copyright as “intellectual property”—a
term also applied to patents, trademarks, and other more obscure areas of law.
These laws have so little in common, and differ so much, that it is ill-advised to
generalize about them. It is best to talk specifically about “copyright,” or about
“patents,” or about “trademarks.”

The term “intellectual property” carries a hidden assumption—that the way
to think about all these disparate issues is based on an analogy with physical
objects, and our conception of them as physical property.

When it comes to copying, this analogy disregards the crucial difference
between material objects and information: information can be copied and shared
almost effortlessly, while material objects can’t be.

To avoid spreading unnecessary bias and confusion, it is best to adopt a firm
policy not to speak or even think in terms of “intellectual property.”

3 See my article, “On Hacking,” at http://stallman.org/articles/on-hacking.
html.

http://stallman.org/articles/on-hacking.html
http://stallman.org/articles/on-hacking.html

98 Free Software, Free Society, 2nd ed.

The hypocrisy of calling these powers “rights” is starting to make the World
“Intellectual Property” Organization embarrassed.

LAMP System

“LAMP” stands for “Linux, Apache, MySQL and PHP”—a common combina-
tion of software to use on a web server, except that “Linux” in this context
really refers to the GNU/Linux system. So instead of “LAMP” it should be
“GLAMP”: “GNU, Linux, Apache, MySQL and PHP.”

Linux System

Linux is the name of the kernel that Linus Torvalds developed starting in 1991.
The operating system in which Linux is used is basically GNU with Linux added.
To call the whole system “Linux” is both unfair and confusing. Please call
the complete system GNU/Linux, both to give the GNU Project credit and to
distinguish the whole system from the kernel alone.

Market

It is misleading to describe the users of free software, or the software users in
general, as a “market.”

This is not to say there is no room for markets in the free software community.
If you have a free software support business, then you have clients, and you trade
with them in a market. As long as you respect their freedom, we wish you success
in your market.

But the free software movement is a social movement, not a business, and
the success it aims for is not a market success. We are trying to serve the public
by giving it freedom—not competing to draw business away from a rival. To
equate this campaign for freedom to a business’ efforts for mere success is to
deny the importance of freedom and legitimize proprietary software.

MP3 Player

In the late 1990s it became feasible to make portable, solid-state digital audio
players. Most support the patented MP3 codec, but not all. Some support
the patent-free audio codecs Ogg Vorbis and FLAC, and may not even support
MP3-encoded files at all, precisely to avoid these patents. To call such players
“MP3 players” is not only confusing, it also puts MP3 in an undeserved position
of privilege which encourages people to continue using that vulnerable format.
We suggest the terms “digital audio player,” or simply “audio player” if context
permits.

Chapter 16: Words to Avoid (or Use with Care) 99

Open

Please avoid using the term “open” or “open source” as a substitute for “free
software.” Those terms refer to a different position based on different values.
Free software is a political movement; open source is a development model.

When referring to the open source position, using its name is appropriate;
but please do not use it to label us or our work—that leads people to think we
share those views.

PC

It’s OK to use the abbreviation “PC” to refer to a certain kind of computer
hardware, but please don’t use it with the implication that the computer is
running Microsoft Windows. If you install GNU/Linux on the same computer,
it is still a PC.

The term “WC” has been suggested for a computer running Windows.

Photoshop

Please avoid using the term “photoshop” as a verb, meaning any kind of photo
manipulation or image editing in general. Photoshop is just the name of one
particular image editing program, which should be avoided since it is proprietary.
There are plenty of free alternatives, such as GIMP.

Piracy

Publishers often refer to copying they don’t approve of as “piracy.” In this way,
they imply that it is ethically equivalent to attacking ships on the high seas,
kidnapping and murdering the people on them. Based on such propaganda, they
have procured laws in most of the world to forbid copying in most (or sometimes
all) circumstances. (They are still pressuring to make these prohibitions more
complete.)

If you don’t believe that copying not approved by the publisher is just like
kidnapping and murder, you might prefer not to use the word “piracy” to de-
scribe it. Neutral terms such as “unauthorized copying” (or “prohibited copy-
ing” for the situation where it is illegal) are available for use instead. Some of
us might even prefer to use a positive term such as “sharing information with
your neighbor.”

PowerPoint

Please avoid using the term “PowerPoint” to mean any kind of slide presentation.
“PowerPoint” is just the name of one particular proprietary program to make
presentations, and there are plenty of free alternatives, such as TEX’s beamer

class and OpenOffice.org’s Impress.

100 Free Software, Free Society, 2nd ed.

Protection

Publishers’ lawyers love to use the term “protection” to describe copyright. This
word carries the implication of preventing destruction or suffering; therefore, it
encourages people to identify with the owner and publisher who benefit from
copyright, rather than with the users who are restricted by it.

It is easy to avoid “protection” and use neutral terms instead. For example,
instead of saying, “Copyright protection lasts a very long time,” you can say,
“Copyright lasts a very long time.”

If you want to criticize copyright instead of supporting it, you can use the
term “copyright restrictions.” Thus, you can say, “Copyright restrictions last a
very long time.”

The term “protection” is also used to describe malicious features. For
instance, “copy protection” is a feature that interferes with copying. From
the user’s point of view, this is obstruction. So we could call that mali-
cious feature “copy obstruction.” More often it is called Digital Restrictions
Management (DRM)—see the Defective by Design campaign, at http://www.
defectivebydesign.org.

RAND (Reasonable and Non-Discriminatory)

Standards bodies that promulgate patent-restricted standards that prohibit free
software typically have a policy of obtaining patent licenses that require a fixed
fee per copy of a conforming program. They often refer to such licenses by the
term “RAND,” which stands for “reasonable and non-discriminatory.”

That term whitewashes a class of patent licenses that are normally neither
reasonable nor nondiscriminatory. It is true that these licenses do not discrimi-
nate against any specific person, but they do discriminate against the free soft-
ware community, and that makes them unreasonable. Thus, half of the term
“RAND” is deceptive and the other half is prejudiced.

Standards bodies should recognize that these licenses are discriminatory, and
drop the use of the term “reasonable and non-discriminatory” or “RAND” to
describe them. Until they do so, writers who do not wish to join in the white-
washing would do well to reject that term. To accept and use it merely because
patent-wielding companies have made it widespread is to let those companies
dictate the views you express.

We suggest the term “uniform fee only,” or “UFO” for short, as a replace-
ment. It is accurate because the only condition in these licenses is a uniform
royalty fee.

http://www.defectivebydesign.org
http://www.defectivebydesign.org

Chapter 16: Words to Avoid (or Use with Care) 101

Sell Software

The term “sell software” is ambiguous. Strictly speaking, exchanging a copy of
a free program for a sum of money is selling; but people usually associate the
term “sell” with proprietary restrictions on the subsequent use of the software.
You can be more precise, and prevent confusion, by saying either “distributing
copies of a program for a fee” or “imposing proprietary restrictions on the use
of a program,” depending on what you mean.

See “Selling Free Software” (p. 65) for further discussion of this issue.

Software Industry

The term “software industry” encourages people to imagine that software is
always developed by a sort of factory and then delivered to “consumers.” The
free software community shows this is not the case. Software businesses exist,
and various businesses develop free and/or nonfree software, but those that
develop free software are not run like factories.

The term “industry” is being used as propaganda by advocates of software
patents. They call software development “industry” and then try to argue that
this means it should be subject to patent monopolies. The European Parliament,
rejecting software patents in 2003,4 voted to define “industry” as “automated
production of material goods.”

Theft

Copyright apologists often use words like “stolen” and “theft” to describe copy-
right infringement. At the same time, they ask us to treat the legal system as
an authority on ethics: if copying is forbidden, it must be wrong.

So it is pertinent to mention that the legal system—at least in the US—
rejects the idea that copyright infringement is “theft.” Copyright apologists are
making an appeal to authority. . . and misrepresenting what authority says.

The idea that laws decide what is right or wrong is mistaken in general. Laws
are, at their best, an attempt to achieve justice; to say that laws define justice
or ethical conduct is turning things upside down.

Trusted Computing

“Trusted computing” is the proponents’ name for a scheme to redesign computers
so that application developers can trust your computer to obey them instead of
you. From their point of view, it is “trusted”; from your point of view, it is
“treacherous.”

4 “Directive on the patentability of computer-implemented inventions,” 24 Septem-
ber 2003, http://eupat.ffii.org/papers/europarl0309.

http://eupat.ffii.org/papers/europarl0309

102 Free Software, Free Society, 2nd ed.

Vendor

Please don’t use the term “vendor” to refer generally to anyone that develops
or packages software. Many programs are developed in order to sell copies,
and their developers are therefore their vendors; this even includes some free
software packages. However, many programs are developed by volunteers or or-
ganizations which do not intend to sell copies. These developers are not vendors.
Likewise, only some of the packagers of GNU/Linux distributions are vendors.
We recommend the general term “supplier” instead.

Part III:

Copyright, Copyleft

Chapter 17: The Right to Read: A Dystopian Short Story 105

17 The Right to Read: A Dystopian

Short Story

From The Road to Tycho, a collection of articles about the antecedents of the
Lunarian Revolution, published in Luna City in 2096.

For Dan Halbert, the road to Tycho began in college—when Lissa Lenz asked
to borrow his computer. Hers had broken down, and unless she could borrow
another, she would fail her midterm project. There was no one she dared ask,
except Dan.

This put Dan in a dilemma. He had to help her—but if he lent her his
computer, she might read his books. Aside from the fact that you could go to
prison for many years for letting someone else read your books, the very idea
shocked him at first. Like everyone, he had been taught since elementary school
that sharing books was nasty and wrong—something that only pirates would
do.

And there wasn’t much chance that the SPA—the Software Protection
Authority—would fail to catch him. In his software class, Dan had learned
that each book had a copyright monitor that reported when and where it was
read, and by whom, to Central Licensing. (They used this information to catch
reading pirates, but also to sell personal interest profiles to retailers.) The next
time his computer was networked, Central Licensing would find out. He, as
computer owner, would receive the harshest punishment—for not taking pains
to prevent the crime.

Of course, Lissa did not necessarily intend to read his books. She might
want the computer only to write her midterm. But Dan knew she came from a
middle-class family and could hardly afford the tuition, let alone her reading fees.
Reading his books might be the only way she could graduate. He understood
this situation; he himself had had to borrow to pay for all the research papers he
read. (Ten percent of those fees went to the researchers who wrote the papers;
since Dan aimed for an academic career, he could hope that his own research
papers, if frequently referenced, would bring in enough to repay this loan.)

Later on, Dan would learn there was a time when anyone could go to the
library and read journal articles, and even books, without having to pay. There
were independent scholars who read thousands of pages without government

Copyright c© 1996, 2002, 2007, 2009, 2010 Richard Stallman
This essay was written in 1996 and was published in Communications of the

ACM, vol. 40, n. 2, February 1997. This version is part of Free Software, Free
Society: Selected Essays of Richard M. Stallman, 2nd ed. (Boston: GNU Press,
2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

106 Free Software, Free Society, 2nd ed.

library grants. But in the 1990s, both commercial and nonprofit journal pub-
lishers had begun charging fees for access. By 2047, libraries offering free public
access to scholarly literature were a dim memory.

There were ways, of course, to get around the SPA and Central Licensing.
They were themselves illegal. Dan had had a classmate in software, Frank
Martucci, who had obtained an illicit debugging tool, and used it to skip over the
copyright monitor code when reading books. But he had told too many friends
about it, and one of them turned him in to the SPA for a reward (students deep
in debt were easily tempted into betrayal). In 2047, Frank was in prison, not
for pirate reading, but for possessing a debugger.

Dan would later learn that there was a time when anyone could have debug-
ging tools. There were even free debugging tools available on CD or download-
able over the net. But ordinary users started using them to bypass copyright
monitors, and eventually a judge ruled that this had become their principal use
in actual practice. This meant they were illegal; the debuggers’ developers were
sent to prison.

Programmers still needed debugging tools, of course, but debugger vendors
in 2047 distributed numbered copies only, and only to officially licensed and
bonded programmers. The debugger Dan used in software class was kept behind
a special firewall so that it could be used only for class exercises.

It was also possible to bypass the copyright monitors by installing a modified
system kernel. Dan would eventually find out about the free kernels, even entire
free operating systems, that had existed around the turn of the century. But
not only were they illegal, like debuggers—you could not install one if you had
one, without knowing your computer’s root password. And neither the FBI nor
Microsoft Support would tell you that.

Dan concluded that he couldn’t simply lend Lissa his computer. But he
couldn’t refuse to help her, because he loved her. Every chance to speak with
her filled him with delight. And that she chose him to ask for help, that could
mean she loved him too.

Dan resolved the dilemma by doing something even more unthinkable—he
lent her the computer, and told her his password. This way, if Lissa read his
books, Central Licensing would think he was reading them. It was still a crime,
but the SPA would not automatically find out about it. They would only find
out if Lissa reported him.

Of course, if the school ever found out that he had given Lissa his own
password, it would be curtains for both of them as students, regardless of what
she had used it for. School policy was that any interference with their means of
monitoring students’ computer use was grounds for disciplinary action. It didn’t
matter whether you did anything harmful—the offense was making it hard for
the administrators to check on you. They assumed this meant you were doing
something else forbidden, and they did not need to know what it was.

Students were not usually expelled for this—not directly. Instead they were
banned from the school computer systems, and would inevitably fail all their
classes.

Chapter 17: The Right to Read: A Dystopian Short Story 107

Later, Dan would learn that this kind of university policy started only in the
1980s, when university students in large numbers began using computers. Pre-
viously, universities maintained a different approach to student discipline; they
punished activities that were harmful, not those that merely raised suspicion.

Lissa did not report Dan to the SPA. His decision to help her led to their
marriage, and also led them to question what they had been taught about piracy
as children. The couple began reading about the history of copyright, about the
Soviet Union and its restrictions on copying, and even the original United States
Constitution. They moved to Luna, where they found others who had likewise
gravitated away from the long arm of the SPA. When the Tycho Uprising began
in 2062, the universal right to read soon became one of its central aims.

Author’s Note1

The right to read is a battle being fought today. Although it may take 50 years
for our present way of life to fade into obscurity, most of the specific laws and
practices described above have already been proposed; many have been enacted
into law in the US and elsewhere. In the US, the 1998 Digital Millennium
Copyright Act (DMCA) established the legal basis to restrict the reading and
lending of computerized books (and other works as well). The European Union
imposed similar restrictions in a 2001 copyright directive. In France, under the
DADVSI law adopted in 2006, mere possession of a copy of DeCSS, the free
program to decrypt video on a DVD, is a crime.

In 2001, Disney-funded Senator Hollings proposed a bill called the SSSCA
that would require every new computer to have mandatory copy-restriction fa-
cilities that the user cannot bypass. Following the Clipper chip and similar US
government key-escrow proposals, this shows a long-term trend: computer sys-
tems are increasingly set up to give absentees with clout control over the people
actually using the computer system. The SSSCA was later renamed to the un-
pronounceable CBDTPA, which was glossed as the “Consume But Don’t Try
Programming Act.”

The Republicans took control of the US senate shortly thereafter. They are
less tied to Hollywood than the Democrats, so they did not press these proposals.
Now that the Democrats are back in control, the danger is once again higher.

In 2001 the US began attempting to use the proposed Free Trade Area of
the Americas (FTAA) treaty to impose the same rules on all the countries in
the Western Hemisphere. The FTAA is one of the so-called free trade treaties,
which are actually designed to give business increased power over democratic
governments; imposing laws like the DMCA is typical of this spirit. The FTAA
was effectively killed by Lula, President of Brazil, who rejected the DMCA
requirement and others.

Since then, the US has imposed similar requirements on countries such as
Australia and Mexico through bilateral “free trade” agreements, and on countries
such as Costa Rica through another treaty, CAFTA. Ecuador’s President Correa

1This note has been updated several times since the first publication of the story.

108 Free Software, Free Society, 2nd ed.

refused to sign a “free trade” agreement with the US, but I’ve heard Ecuador
had adopted something like the DMCA in 2003.

One of the ideas in the story was not proposed in reality until 2002. This
is the idea that the FBI and Microsoft will keep the root passwords for your
personal computers, and not let you have them.

The proponents of this scheme have given it names such as “trusted comput-
ing” and “Palladium.” We call it “treacherous computing” because the effect
is to make your computer obey companies even to the extent of disobeying and
defying you. This was implemented in 2007 as part of Windows Vista; we expect
Apple to do something similar. In this scheme, it is the manufacturer that keeps
the secret code, but the FBI would have little trouble getting it.

What Microsoft keeps is not exactly a password in the traditional sense; no
person ever types it on a terminal. Rather, it is a signature and encryption
key that corresponds to a second key stored in your computer. This enables
Microsoft, and potentially any web sites that cooperate with Microsoft, the
ultimate control over what the user can do on his own computer.

Vista also gives Microsoft additional powers; for instance, Microsoft can
forcibly install upgrades, and it can order all machines running Vista to refuse to
run a certain device driver. The main purpose of Vista’s many restrictions is to
impose DRM (Digital Restrictions Management) that users can’t overcome. The
threat of DRM is why we have established the Defective by Design campaign.

When this story was first written, the SPA was threatening small Internet
service providers, demanding they permit the SPA to monitor all users. Most
ISPs surrendered when threatened, because they cannot afford to fight back
in court. One ISP, Community ConneXion in Oakland, California, refused the
demand and was actually sued. The SPA later dropped the suit, but obtained
the DMCA, which gave them the power they sought.

The SPA, which actually stands for Software Publishers Association, has
been replaced in its police-like role by the Business Software Alliance. The
BSA is not, today, an official police force; unofficially, it acts like one. Using
methods reminiscent of the erstwhile Soviet Union, it invites people to inform
on their coworkers and friends. A BSA terror campaign in Argentina in 2001
made slightly veiled threats that people sharing software would be raped.

The university security policies described above are not imaginary. For ex-
ample, a computer at one Chicago-area university displayed this message upon
login:

This system is for the use of authorized users only. Individuals using this
computer system without authority or in the excess of their authority are
subject to having all their activities on this system monitored and recorded
by system personnel. In the course of monitoring individuals improperly
using this system or in the course of system maintenance, the activities of
authorized user may also be monitored. Anyone using this system expressly
consents to such monitoring and is advised that if such monitoring reveals
possible evidence of illegal activity or violation of University regulations
system personnel may provide the evidence of such monitoring to University
authorities and/or law enforcement officials.

Chapter 17: The Right to Read: A Dystopian Short Story 109

This is an interesting approach to the Fourth Amendment: pressure most ev-
eryone to agree, in advance, to waive their rights under it.

References

• United States Patent and Trademark Office, Intellectual Property [sic] and
the National Information Infrastructure: The Report of the Working Group
on Intellectual Property [sic] Rights, Washington, DC: GPO, 1995.

• Samuelson, Pamela, “The Copyright Grab,” Wired, January 1996, n. 4.01.

• Boyle, James, “Sold Out,” New York Times, 31 March 1996, sec. 4, p. 15.

• Editorial, Washington Post, “Public Data or Private Data,” 3 Novem-
ber 1996, sec. C, p. 6.

• Union for the Public Domain—an organization that aims to resist and
reverse the overextension of copyright and patent powers.

Chapter 18: Misinterpreting Copyright—A Series of Errors 111

18 Misinterpreting Copyright—A Series

of Errors

Something strange and dangerous is happening in copyright law. Under the US
Constitution, copyright exists to benefit users—those who read books, listen to
music, watch movies, or run software—not for the sake of publishers or authors.
Yet even as people tend increasingly to reject and disobey the copyright restric-
tions imposed on them “for their own benefit,” the US government is adding
more restrictions, and trying to frighten the public into obedience with harsh
new penalties.

How did copyright policies come to be diametrically opposed to their stated
purpose? And how can we bring them back into alignment with that purpose?
To understand, we should start by looking at the root of United States copyright
law: the US Constitution.

Copyright in the US Constitution

When the US Constitution was drafted, the idea that authors were entitled to a
copyright monopoly was proposed—and rejected. The founders of our country
adopted a different premise, that copyright is not a natural right of authors, but
an artificial concession made to them for the sake of progress. The Constitution
gives permission for a copyright system with this clause (Article I, Section 8,
Clause 8):

[Congress shall have the power] to promote the Progress of Science and the
useful Arts, by securing for limited Times to Authors and Inventors the
exclusive Right to their respective Writings and Discoveries.

The Supreme Court has repeatedly affirmed that promoting progress means
benefit for the users of copyrighted works. For example, in Fox Film v. Doyal,1

the court said,

The sole interest of the United States and the primary object in conferring
the [copyright] monopoly lie in the general benefits derived by the public
from the labors of authors.

This fundamental decision explains why copyright is not required by the
Constitution, only permitted as an option—and why it is supposed to last for
“limited times.” If copyright were a natural right, something that authors have
because they deserve it, nothing could justify terminating this right after a
certain period of time, any more than everyone’s house should become public
property after a certain lapse of time from its construction.

1 Fox Film Corp. v. Doyal, 286 US 123, 1932.

Copyright c© 2002, 2003, 2007, 2009, 2010 Free Software Foundation, Inc.
This essay was first published on http://gnu.org, in 2002. This version is part

of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

112 Free Software, Free Society, 2nd ed.

The “Copyright Bargain”

The copyright system works by providing privileges and thus benefits to pub-
lishers and authors; but it does not do this for their sake. Rather, it does this
to modify their behavior: to provide an incentive for authors to write more and
publish more. In effect, the government spends the public’s natural rights, on
the public’s behalf, as part of a deal to bring the public more published works.
Legal scholars call this concept the “copyright bargain.” It is like a government
purchase of a highway or an airplane using taxpayers’ money, except that the
government spends our freedom instead of our money.

But is the bargain as it exists actually a good deal for the public? Many
alternative bargains are possible; which one is best? Every issue of copyright
policy is part of this question. If we misunderstand the nature of the question,
we will tend to decide the issues badly.

The Constitution authorizes granting copyright powers to authors. In prac-
tice, authors typically cede them to publishers; it is usually the publishers, not
the authors, who exercise these powers and get most of the benefits, though
authors may get a small portion. Thus it is usually the publishers that lobby to
increase copyright powers. To better reflect the reality of copyright rather than
the myth, this article refers to publishers rather than authors as the holders of
copyright powers. It also refers to the users of copyrighted works as “readers,”
even though using them does not always mean reading, because “the users” is
remote and abstract.

The First Error: “Striking a Balance”

The copyright bargain places the public first: benefit for the reading public is
an end in itself; benefits (if any) for publishers are just a means toward that
end. Readers’ interests and publishers’ interests are thus qualitatively unequal
in priority. The first step in misinterpreting the purpose of copyright is the
elevation of the publishers to the same level of importance as the readers.

It is often said that US copyright law is meant to “strike a balance” between
the interests of publishers and readers. Those who cite this interpretation present
it as a restatement of the basic position stated in the Constitution; in other
words, it is supposed to be equivalent to the copyright bargain.

But the two interpretations are far from equivalent; they are different con-
ceptually, and different in their implications. The balance concept assumes that
the readers’ and publishers’ interests differ in importance only quantitatively, in
how much weight we should give them, and in what actions they apply to. The
term “stakeholders” is often used to frame the issue in this way; it assumes that
all kinds of interest in a policy decision are equally important. This view rejects
the qualitative distinction between the readers’ and publishers’ interests which
is at the root of the government’s participation in the copyright bargain.

The consequences of this alteration are far-reaching, because the great pro-
tection for the public in the copyright bargain—the idea that copyright privi-
leges can be justified only in the name of the readers, never in the name of the
publishers—is discarded by the “balance” interpretation. Since the interest of

Chapter 18: Misinterpreting Copyright—A Series of Errors 113

the publishers is regarded as an end in itself, it can justify copyright privileges;
in other words, the “balance” concept says that privileges can be justified in the
name of someone other than the public.

As a practical matter, the consequence of the “balance” concept is to reverse
the burden of justification for changes in copyright law. The copyright bargain
places the burden on the publishers to convince the readers to cede certain
freedoms. The concept of balance reverses this burden, practically speaking,
because there is generally no doubt that publishers will benefit from additional
privilege. Unless harm to the readers can be proved, sufficient to “outweigh”
this benefit, we are led to conclude that the publishers are entitled to almost
any privilege they request.

Since the idea of “striking a balance” between publishers and readers denies
the readers the primacy they are entitled to, we must reject it.

Balancing against What?

When the government buys something for the public, it acts on behalf of the
public; its responsibility is to obtain the best possible deal—best for the public,
not for the other party in the agreement.

For example, when signing contracts with construction companies to build
highways, the government aims to spend as little as possible of the public’s
money. Government agencies use competitive bidding to push the price down.

As a practical matter, the price cannot be zero, because contractors will not
bid that low. Although not entitled to special consideration, they have the usual
rights of citizens in a free society, including the right to refuse disadvantageous
contracts; even the lowest bid will be high enough for some contractor to make
money. So there is indeed a balance, of a kind. But it is not a deliberate
balancing of two interests each with claim to special consideration. It is a balance
between a public goal and market forces. The government tries to obtain for the
taxpaying motorists the best deal they can get in the context of a free society
and a free market.

In the copyright bargain, the government spends our freedom instead of our
money. Freedom is more precious than money, so government’s responsibility to
spend our freedom wisely and frugally is even greater than its responsibility to
spend our money thus. Governments must never put the publishers’ interests
on a par with the public’s freedom.

Not “Balance” but “Trade-Off”

The idea of balancing the readers’ interests against the publishers’ is the wrong
way to judge copyright policy, but there are indeed two interests to be weighed:
two interests of the readers. Readers have an interest in their own freedom
in using published works; depending on circumstances, they may also have an
interest in encouraging publication through some kind of incentive system.

The word “balance,” in discussions of copyright, has come to stand as short-
hand for the idea of “striking a balance” between the readers and the publishers.

114 Free Software, Free Society, 2nd ed.

Therefore, to use the word “balance” in regard to the readers’ two interests would
be confusing. We need another term.

In general, when one party has two goals that partly conflict, and cannot
completely achieve both of them, we call this a “trade-off.” Therefore, rather
than speaking of “striking the right balance” between parties, we should speak
of “finding the right trade-off between spending our freedom and keeping it.”

The Second Error: Maximizing One Output

The second mistake in copyright policy consists of adopting the goal of
maximizing—not just increasing—the number of published works. The
erroneous concept of “striking a balance” elevated the publishers to parity with
the readers; this second error places them far above the readers.

When we purchase something, we do not generally buy the whole quantity
in stock or the most expensive model. Instead we conserve funds for other
purchases, by buying only what we need of any particular good, and choosing
a model of sufficient rather than highest quality. The principle of diminishing
returns suggests that spending all our money on one particular good is likely to
be an inefficient allocation of resources; we generally choose to keep some money
for another use.

Diminishing returns applies to copyright just as to any other purchase. The
first freedoms we should trade away are those we miss the least, and whose
sacrifice gives the largest encouragement to publication. As we trade additional
freedoms that cut closer to home, we find that each trade is a bigger sacrifice
than the last, while bringing a smaller increment in literary activity. Well before
the increment becomes zero, we may well say it is not worth its incremental
price; we would then settle on a bargain whose overall result is to increase the
amount of publication, but not to the utmost possible extent.

Accepting the goal of maximizing publication rejects all these wiser, more
advantageous bargains in advance—it dictates that the public must cede nearly
all of its freedom to use published works, for just a little more publication.

The Rhetoric of Maximization

In practice, the goal of maximizing publication regardless of the cost to free-
dom is supported by widespread rhetoric which asserts that public copying is
illegitimate, unfair, and intrinsically wrong. For instance, the publishers call
people who copy “pirates,” a smear term designed to equate sharing informa-
tion with your neighbor with attacking a ship. (This smear term was formerly
used by authors to describe publishers who found lawful ways to publish unau-
thorized editions; its modern use by the publishers is almost the reverse.) This
rhetoric directly rejects the constitutional basis for copyright, but presents itself
as representing the unquestioned tradition of the American legal system.

The “pirate” rhetoric is typically accepted because it so pervades the media
that few people realize how radical it is. It is effective because if copying by
the public is fundamentally illegitimate, we can never object to the publishers’
demand that we surrender our freedom to do so. In other words, when the

Chapter 18: Misinterpreting Copyright—A Series of Errors 115

public is challenged to show why publishers should not receive some additional
power, the most important reason of all—“We want to copy”—is disqualified in
advance.

This leaves no way to argue against increasing copyright power except using
side issues. Hence, opposition to stronger copyright powers today almost exclu-
sively cites side issues, and never dares cite the freedom to distribute copies as
a legitimate public value.

As a practical matter, the goal of maximization enables publishers to argue
that “A certain practice is reducing our sales—or we think it might—so we
presume it diminishes publication by some unknown amount, and therefore it
should be prohibited.” We are led to the outrageous conclusion that the public
good is measured by publishers’ sales: What’s good for General Media is good
for the USA.

The Third Error: Maximizing Publishers’ Power

Once the publishers have obtained assent to the policy goal of maximizing pub-
lication output at any cost, their next step is to infer that this requires giving
them the maximum possible powers—making copyright cover every imaginable
use of a work, or applying some other legal tool such as “shrink wrap” licenses
to equivalent effect. This goal, which entails the abolition of “fair use” and the
“right of first sale,” is being pressed at every available level of government, from
states of the US to international bodies.

This step is erroneous because strict copyright rules obstruct the creation
of useful new works. For instance, Shakespeare borrowed the plots of some of
his plays from works others had published a few decades before, so if today’s
copyright law had been in effect, his plays would have been illegal.

Even if we wanted the highest possible rate of publication, regardless of cost
to the public, maximizing publishers’ power is the wrong way to get it. As a
means of promoting progress, it is self-defeating.

The Results of the Three Errors

The current trend in copyright legislation is to hand publishers broader powers
for longer periods of time. The conceptual basis of copyright, as it emerges
distorted from the series of errors, rarely offers a basis for saying no. Legislators
give lip service to the idea that copyright serves the public, while in fact giving
publishers whatever they ask for.

For example, here is what Senator Hatch said when introducing S. 483,2 a
1995 bill to increase the term of copyright by 20 years:

I believe we are now at such a point with respect to the question of whether
the current term of copyright adequately protects the interests of authors

2 Congressional Record, S. 483, “The Copyright Term Extension Act of 1995,”
2 March 1995, pp. S3390–4.

116 Free Software, Free Society, 2nd ed.

and the related question of whether the term of protection continues to
provide a sufficient incentive for the creation of new works of authorship.3

This bill extended the copyright on already published works written since
the 1920s. This change was a giveaway to publishers with no possible benefit
to the public, since there is no way to retroactively increase now the number of
books published back then. Yet it cost the public a freedom that is meaningful
today—the freedom to redistribute books from that era.

The bill also extended the copyrights of works yet to be written. For works
made for hire, copyright would last 95 years instead of the present 75 years.
Theoretically this would increase the incentive to write new works; but any pub-
lisher that claims to need this extra incentive should be required to substantiate
the claim with projected balance sheets for 75 years in the future.

Needless to say, Congress did not question the publishers’ arguments: a law
extending copyright was enacted in 1998. It was officially called the Sonny
Bono Copyright Term Extension Act, named after one of its sponsors who died
earlier that year. We usually call it the Mickey Mouse Copyright Act, since
we presume its real motive was to prevent the copyright on the appearance of
Mickey Mouse from expiring. Bono’s widow, who served the rest of his term,
made this statement:

Actually, Sonny wanted the term of copyright protection to last forever. I
am informed by staff that such a change would violate the Constitution. I
invite all of you to work with me to strengthen our copyright laws in all of
the ways available to us. As you know, there is also Jack Valenti’s4 proposal
for term to last forever less one day. Perhaps the Committee may look at
that next Congress.5

The Supreme Court later heard a case that sought to overturn the law on
the grounds that the retroactive extension fails to serve the Constitution’s goal
of promoting progress. The court responded by abdicating its responsibility to
judge the question; on copyright, the Constitution requires only lip service.

Another law, passed in 1997, made it a felony to make sufficiently many
copies of any published work, even if you give them away to friends just to be
nice. Previously this was not a crime in the US at all.

An even worse law, the Digital Millennium Copyright Act (DMCA), was de-
signed to bring back copy protection (which computer users detest) by making
it a crime to break copy protection, or even publish information about how to
break it. This law ought to be called the “Domination by Media Corporations
Act” because it effectively offers publishers the chance to write their own copy-
right law. It says they can impose any restrictions whatsoever on the use of a

3 Congressional Record, “Statement on Introduced Bills and Joint Resolutions,”
2 March 1995, p. S3390, http://gpo.gov/fdsys/pkg/CREC-1995-03-02/pdf/
CREC-1995-03-02-pt1-PgS3390-2.pdf.

4 Jack Valenti was a longtime president of the Motion Picture Association of
America.

5 Congressional Record, remarks of Rep. Bono, 7 October 1998,
p. H9952, http://gpo.gov/fdsys/pkg/CREC-1998-10-07/pdf/
CREC-1998-10-07-pt1-PgH9946.pdf.

http://gpo.gov/fdsys/pkg/CREC-1995-03-02/pdf/CREC-1995-03-02-pt1-PgS3390-2.pdf
http://gpo.gov/fdsys/pkg/CREC-1995-03-02/pdf/CREC-1995-03-02-pt1-PgS3390-2.pdf
http://gpo.gov/fdsys/pkg/CREC-1998-10-07/pdf/CREC-1998-10-07-pt1-PgH9946.pdf
http://gpo.gov/fdsys/pkg/CREC-1998-10-07/pdf/CREC-1998-10-07-pt1-PgH9946.pdf

Chapter 18: Misinterpreting Copyright—A Series of Errors 117

work, and these restrictions take the force of law provided the work contains
some sort of encryption or license manager to enforce them.

One of the arguments offered for this bill was that it would implement a
recent treaty to increase copyright powers. The treaty was promulgated by
the World “Intellectual Property” Organization, an organization dominated by
copyright- and patent-holding interests, with the aid of pressure from the Clinton
administration; since the treaty only increases copyright power, whether it serves
the public interest in any country is doubtful. In any case, the bill went far
beyond what the treaty required.

Libraries were a key source of opposition to this bill, especially to the as-
pects that block the forms of copying that are considered fair use. How did the
publishers respond? Former representative Pat Schroeder, now a lobbyist for
the Association of American Publishers, said that the publishers “could not live
with what [the libraries were] asking for.” Since the libraries were asking only
to preserve part of the status quo, one might respond by wondering how the
publishers had survived until the present day.

Congressman Barney Frank, in a meeting with me and others who opposed
this bill, showed how far the US Constitution’s view of copyright has been dis-
regarded. He said that new powers, backed by criminal penalties, were needed
urgently because the “movie industry is worried,” as well as the “music indus-
try” and other “industries.” I asked him, “But is this in the public interest?”
His response was telling: “Why are you talking about the public interest? These
creative people don’t have to give up their rights for the public interest!” The
“industry” has been identified with the “creative people” it hires, copyright has
been treated as its entitlement, and the Constitution has been turned upside
down.

The DMCA was enacted in 1998. As enacted, it says that fair use remains
nominally legitimate, but allows publishers to prohibit all software or hardware
that you could practice it with. Effectively, fair use is prohibited.

Based on this law, the movie industry has imposed censorship on free soft-
ware for reading and playing DVDs, and even on the information about how
to read them. In April 2001, Professor Edward Felten of Princeton University
was intimidated by lawsuit threats from the Recording Industry Association of
America (RIAA) into withdrawing a scientific paper stating what he had learned
about a proposed encryption system for restricting access to recorded music.

We are also beginning to see e-books that take away many of readers’ tra-
ditional freedoms—for instance, the freedom to lend a book to your friend, to
sell it to a used book store, to borrow it from a library, to buy it without giving
your name to a corporate data bank, even the freedom to read it twice. En-
crypted e-books generally restrict all these activities—you can read them only
with special secret software designed to restrict you.

I will never buy one of these encrypted, restricted e-books, and I hope you
will reject them too. If an e-book doesn’t give you the same freedoms as a
traditional paper book, don’t accept it!

Anyone independently releasing software that can read restricted e-books
risks prosecution. A Russian programmer, Dmitry Sklyarov, was arrested in

118 Free Software, Free Society, 2nd ed.

2001 while visiting the US to speak at a conference, because he had written such
a program in Russia, where it was lawful to do so. Now Russia is preparing a
law to prohibit it too, and the European Union recently adopted one.

Mass-market e-books have been a commercial failure so far, but not because
readers chose to defend their freedom; they were unattractive for other reasons,
such as that computer display screens are not easy surfaces to read from. We
can’t rely on this happy accident to protect us in the long term; the next attempt
to promote e-books will use “electronic paper”—book-like objects into which an
encrypted, restricted e-book can be downloaded. If this paper-like surface proves
more appealing than today’s display screens, we will have to defend our freedom
in order to keep it. Meanwhile, e-books are making inroads in niches: NYU
and other dental schools require students to buy their textbooks in the form of
restricted e-books.

The media companies are not satisfied yet. In 2001, Disney-funded Senator
Hollings proposed a bill called the “Security Systems Standards and Certification
Act” (SSSCA),6 which would require all computers (and other digital recording
and playback devices) to have government-mandated copy-restriction systems.
That is their ultimate goal, but the first item on their agenda is to prohibit any
equipment that can tune digital HDTV unless it is designed to be impossible
for the public to “tamper with” (i.e., modify for their own purposes). Since
free software is software that users can modify, we face here for the first time a
proposed law that explicitly prohibits free software for a certain job. Prohibition
of other jobs will surely follow. If the FCC adopts this rule, existing free software
such as GNU Radio would be censored.

To block these bills and rules requires political action.7

Finding the Right Bargain

What is the proper way to decide copyright policy? If copyright is a bargain
made on behalf of the public, it should serve the public interest above all. The
government’s duty when selling the public’s freedom is to sell only what it must,
and sell it as dearly as possible. At the very least, we should pare back the
extent of copyright as much as possible while maintaining a comparable level of
publication.

Since we cannot find this minimum price in freedom through competitive
bidding, as we do for construction projects, how can we find it?

One possible method is to reduce copyright privileges in stages, and observe
the results. By seeing if and when measurable diminutions in publication occur,
we will learn how much copyright power is really necessary to achieve the public’s
purposes. We must judge this by actual observation, not by what publishers say

6 Since renamed to the unpronounceable CBDTPA, for which a good mnemonic is
“Consume, But Don’t Try Programming Anything,” but it really stands for the
“Consumer Broadband and Digital Television Promotion Act.”

7 If you would like to help, I recommend the web sites http://defectivebydesign.
org, http://publicknowledge.org, and http://eff.org.

http://defectivebydesign.org
http://defectivebydesign.org
http://publicknowledge.org
http://eff.org

Chapter 18: Misinterpreting Copyright—A Series of Errors 119

will happen, because they have every incentive to make exaggerated predictions
of doom if their powers are reduced in any way.

Copyright policy includes several independent dimensions, which can be ad-
justed separately. After we find the necessary minimum for one policy dimension,
it may still be possible to reduce other dimensions of copyright while maintaining
the desired publication level.

One important dimension of copyright is its duration, which is now typically
on the order of a century. Reducing the monopoly on copying to ten years,
starting from the date when a work is published, would be a good first step.
Another aspect of copyright, which covers the making of derivative works, could
continue for a longer period.

Why count from the date of publication? Because copyright on unpublished
works does not directly limit readers’ freedom; whether we are free to copy a
work is moot when we do not have copies. So giving authors a longer time to get
a work published does no harm. Authors (who generally do own the copyright
prior to publication) will rarely choose to delay publication just to push back
the end of the copyright term.

Why ten years? Because that is a safe proposal; we can be confident on
practical grounds that this reduction would have little impact on the overall
viability of publishing today. In most media and genres, successful works are
very profitable in just a few years, and even successful works are usually out of
print well before ten. Even for reference works, whose useful life may be many
decades, ten-year copyright should suffice: updated editions are issued regularly,
and many readers will buy the copyrighted current edition rather than copy a
ten-year-old public domain version.

Ten years may still be longer than necessary; once things settle down, we
could try a further reduction to tune the system. At a panel on copyright at a
literary convention, where I proposed the ten-year term, a noted fantasy author
sitting beside me objected vehemently, saying that anything beyond five years
was intolerable.

But we don’t have to apply the same time span to all kinds of works. Main-
taining the utmost uniformity of copyright policy is not crucial to the public
interest, and copyright law already has many exceptions for specific uses and
media. It would be foolish to pay for every highway project at the rates neces-
sary for the most difficult projects in the most expensive regions of the country;
it is equally foolish to “pay” for all kinds of art with the greatest price in freedom
that we find necessary for any one kind.

So perhaps novels, dictionaries, computer programs, songs, symphonies, and
movies should have different durations of copyright, so that we can reduce the
duration for each kind of work to what is necessary for many such works to be
published. Perhaps movies over one hour long could have a 20-year copyright,
because of the expense of producing them. In my own field, computer program-
ming, three years should suffice, because product cycles are even shorter than
that.

Another dimension of copyright policy is the extent of fair use: some ways
of reproducing all or part of a published work that are legally permitted even

120 Free Software, Free Society, 2nd ed.

though it is copyrighted. The natural first step in reducing this dimension of
copyright power is to permit occasional private small-quantity noncommercial
copying and distribution among individuals. This would eliminate the intrusion
of the copyright police into people’s private lives, but would probably have lit-
tle effect on the sales of published works. (It may be necessary to take other
legal steps to ensure that shrink-wrap licenses cannot be used to substitute for
copyright in restricting such copying.) The experience of Napster shows that
we should also permit noncommercial verbatim redistribution to the general
public—when so many of the public want to copy and share, and find it so use-
ful, only draconian measures will stop them, and the public deserves to get what
it wants.

For novels, and in general for works that are used for entertainment, noncom-
mercial verbatim redistribution may be sufficient freedom for the readers. Com-
puter programs, being used for functional purposes (to get jobs done), call for
additional freedoms beyond that, including the freedom to publish an improved
version. See “The Free Software Definition,” in this book, for an explanation
of the freedoms that software users should have. But it may be an acceptable
compromise for these freedoms to be universally available only after a delay of
two or three years from the program’s publication.

Changes like these could bring copyright into line with the public’s wish to
use digital technology to copy. Publishers will no doubt find these proposals
“unbalanced”; they may threaten to take their marbles and go home, but they
won’t really do it, because the game will remain profitable and it will be the
only game in town.

As we consider reductions in copyright power, we must make sure media
companies do not simply replace it with end-user license agreements. It would be
necessary to prohibit the use of contracts to apply restrictions on copying that go
beyond those of copyright. Such limitations on what mass-market nonnegotiated
contracts can require are a standard part of the US legal system.

A Personal Note

I am a software designer, not a legal scholar. I’ve become concerned with copy-
right issues because there’s no avoiding them in the world of computer networks,
such as the Internet. As a user of computers and networks for 30 years, I value
the freedoms that we have lost, and the ones we may lose next. As an author, I
can reject the romantic mystique of the author as semidivine creator, often cited
by publishers to justify increased copyright powers for authors—powers which
these authors will then sign away to publishers.

Most of this article consists of facts and reasoning that you can check, and
proposals on which you can form your own opinions. But I ask you to accept one
thing on my word alone: that authors like me don’t deserve special power over
you. If you wish to reward me further for the software or books I have written,
I would gratefully accept a check—but please don’t surrender your freedom in
my name.

Chapter 19: Science Must Push Copyright Aside 121

19 Science Must Push Copyright Aside

It should be a truism that the scientific literature exists to disseminate scientific
knowledge, and that scientific journals exist to facilitate the process. It therefore
follows that rules for use of the scientific literature should be designed to help
achieve that goal.

The rules we have now, known as copyright, were established in the age of
the printing press, an inherently centralized method of mass-production copy-
ing. In a print environment, copyright on journal articles restricted only jour-
nal publishers—requiring them to obtain permission to publish an article—and
would-be plagiarists. It helped journals to operate and disseminate knowledge,
without interfering with the useful work of scientists or students, either as writers
or readers of articles. These rules fit that system well.

The modern technology for scientific publishing, however, is the World Wide
Web. What rules would best ensure the maximum dissemination of scientific
articles, and knowledge, on the web? Articles should be distributed in nonpro-
prietary formats, with open access for all. And everyone should have the right to
“mirror” articles—that is, to republish them verbatim with proper attribution.

These rules should apply to past as well as future articles, when they are dis-
tributed in electronic form. But there is no crucial need to change the present
copyright system as it applies to paper publication of journals because the prob-
lem is not in that domain.

Unfortunately, it seems that not everyone agrees with the truisms that began
this article. Many journal publishers appear to believe that the purpose of scien-
tific literature is to enable them to publish journals so as to collect subscriptions
from scientists and students. Such thinking is known as “confusion of the means
with the ends.”

Their approach has been to restrict access even to read the scientific literature
to those who can and will pay for it. They use copyright law, which is still in
force despite its inappropriateness for computer networks, as an excuse to stop
scientists from choosing new rules.

For the sake of scientific cooperation and humanity’s future, we must reject
that approach at its root—not merely the obstructive systems that have been
instituted, but the mistaken priorities that inspired them.

Journal publishers sometimes claim that online access requires expensive
high-powered server machines, and that they must charge access fees to pay
for these servers. This “problem” is a consequence of its own “solution.” Give
everyone the freedom to mirror, and libraries around the world will set up mir-
ror sites to meet the demand. This decentralized solution will reduce network

Copyright c© 2001 Richard Stallman
This essay was first published in Nature magazine’s Web Debates forum, on

8 June 2001. This version is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

122 Free Software, Free Society, 2nd ed.

bandwidth needs and provide faster access, all the while protecting the scholarly
record against accidental loss.

Publishers also argue that paying the editors requires charging for access. Let
us accept the assumption that editors must be paid; this tail need not wag the
dog. The cost of editing for a typical paper is between 1 percent and 3 percent
of the cost of funding the research to produce it. Such a small percentage of the
cost can hardly justify obstructing the use of the results.

Instead, the cost of editing could be recovered, for example, through page
charges to the authors, who can pass these on to the research sponsors. The
sponsors should not mind, given that they currently pay for publication in a more
cumbersome way, through overhead fees for the university library’s subscription
to the journal. By changing the economic model to charge editing costs to the
research sponsors, we can eliminate the apparent need to restrict access. The
occasional author who is not affiliated with an institution or company, and who
has no research sponsor, could be exempted from page charges, with costs levied
on institution-based authors.

Another justification for access fees to online publications is to fund con-
version of the print archives of a journal into online form. That work needs to
be done, but we should seek alternative ways of funding it that do not involve
obstructing access to the result. The work itself will not be any more difficult, or
cost any more. It is self-defeating to digitize the archives and waste the results
by restricting access.

The US Constitution says that copyright exists “to promote the Progress of
Science.” When copyright impedes the progress of science, science must push
copyright out of the way.

Chapter 20: Freedom—or Copyright 123

20 Freedom—or Copyright

This essay addresses how the principles of software freedom apply in some
cases to other works of authorship and art. It’s included here since it involves
the application of the ideas of free software.

Copyright was established in the age of the printing press as an industrial reg-
ulation on the business of writing and publishing. The aim was to encourage
the publication of a diversity of written works. The means was to require pub-
lishers to get the author’s permission to publish recent writings. This enabled
authors to get income from publishers, which facilitated and encouraged writing.
The general reading public received the benefit of this, while losing little: copy-
right restricted only publication, not the things an ordinary reader could do.
That made copyright arguably a beneficial system for the public, and therefore
arguably legitimate.

Well and good—back then.
Now we have a new way of distributing information: computers and net-

works. Their benefit is that they facilitate copying and manipulating informa-
tion, including software, musical recordings, books, and movies. They offer the
possibility of unlimited access to all sorts of data—an information utopia.

One obstacle stood in the way: copyright. Readers and listeners who made
use of their new ability to copy and share published information were technically
copyright infringers. The same law which had formerly acted as a beneficial
industrial regulation on publishers had become a restriction on the public it was
meant to serve.

In a democracy, a law that prohibits a popular and useful activity is usually
soon relaxed. Not so where corporations have political power. The publishers’
lobby was determined to prevent the public from taking advantage of the power
of their computers, and found copyright a handy weapon. Under their influence,
rather than relaxing copyright rules to suit the new circumstances, governments
made them stricter than ever, imposing harsh penalties on the practice of shar-
ing. The latest fashion in supporting the publishers against the citizens, known
as “three strikes,” is to cut off people’s Internet connections if they share.

But that wasn’t the worst of it. Computers can be powerful tools of domi-
nation when software suppliers deny users the control of the software they run.
The publishers realized that by publishing works in encrypted format, which
only specially authorized software could view, they could gain unprecedented
power: they could compel readers to pay, and identify themselves, every time

Copyright c© 2008, 2010 Richard Stallman
This essay was originally published on http://gnu.org, in 2008. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

124 Free Software, Free Society, 2nd ed.

they read a book, listen to a song, or watch a video. That is the publishers’
dream: a pay-per-view universe.

The publishers gained US government support for their dream with the Dig-
ital Millennium Copyright Act of 1998. This law gave publishers power to write
their own copyright rules, by implementing them in the code of the authorized
player software. Under this practice, called Digital Restrictions Management,
or DRM, even reading or listening without authorization is forbidden.

We still have the same old freedoms in using paper books and other analog
media. But if e-books replace printed books, those freedoms will not transfer.
Imagine: no more used book stores; no more lending a book to your friend;
no more borrowing one from the public library—no more “leaks” that might
give someone a chance to read without paying. No more purchasing a book
anonymously with cash—you can only buy an e-book with a credit card. That
is the world the publishers want to impose on us. If you buy the Amazon Kindle
(we call it the Swindle) or the Sony Reader (we call it the Shreader for what it
threatens to do to books), you pay to establish that world.

The Swindle even has an Orwellian back door that can be used to erase books
remotely. Amazon demonstrated this capability by erasing copies, purchased
from Amazon, of Orwell’s book 1984. Evidently Amazon’s name for this product
reflects the intention to burn our books.

Public anger against DRM is slowly growing, held back because propaganda
expressions such as “protect authors” and “intellectual property” have convinced
readers that their rights do not count. These terms implicitly assume that
publishers deserve special power in the name of the authors, that we are morally
obliged to bow to them, and that we have wronged someone if we see or hear
anything without paying for permission.

The organizations that profit most from copyright legally exercise it in the
name of the authors (most of whom gain little). They would have you believe
that copyright is a natural right of authors, and that we the public must suffer
it no matter how painful it is. They call sharing “piracy,” equating helping your
neighbor with attacking a ship.

They also tell us that a War on Sharing is the only way to keep art alive.
Even if true, it would not justify the policy; but it isn’t true. Public sharing of
copies is likely to increase the sales of most works, and decrease sales only for
big hits.

Bestsellers can still do well without forbidding sharing. Stephen King got
hundreds of thousands of dollars selling an unencrypted e-book serial with no
obstacle to copying and sharing. (He was dissatisfied with that amount and
called the experiment a failure, but it looks like a success to me.) Radiohead
made millions in 2007 by inviting fans to copy an album and pay what they
wished, while it was also shared through peer-to-peer. In 2008, Nine Inch Nails

Chapter 20: Freedom—or Copyright 125

released an album with permission to share copies and made $750,000 in a few
days.1

The possibility of success without oppression is not limited to bestsellers.
Many artists of various levels of fame now make an adequate living through
voluntary support:2 donations and merchandise purchases of their fans. Kevin
Kelly3 estimates the artist need only find around 1,000 true fans.4

When computer networks provide an easy anonymous method for sending
someone a small amount of money, without a credit card, it will be easy to set
up a much better system to support the arts. When you view a work, there
will be a button you can press saying, “Click here to send the artist one dollar.”
Wouldn’t you press it, at least once a week?

Another good way to support music and the arts is with tax funds—perhaps
a tax on blank media or on Internet connectivity. The state should distribute
the tax money entirely to the artists, not waste it on corporate executives. But
the state should not distribute it in linear proportion to popularity, because
that would give most of it to a few superstars, leaving little to support all the
other artists. I therefore recommend using a cube-root function or something
similar. With linear proportion, superstar A with 1,000 times the popularity of
a successful artist B will get 1,000 times as much money as B. With the cube
root, A will get 10 times as much as B. Thus, each superstar gets a larger share
than a less popular artist, but most of the funds go to the artists who really
need this support. This system will use our tax money efficiently to support the
arts.

The Global Patronage5 proposal combines aspects of those two systems, in-
corporating mandatory payments with voluntary allocation among artists.

In Spain, this tax system should replace the SGAE6 and its canon, which
could be eliminated.

To make copyright fit the network age, we should legalize the noncommercial
copying and sharing of all published works, and prohibit DRM. But until we
win this battle, you must protect yourself: don’t buy any products with DRM
unless you personally have the means to break the DRM. Never use a product
designed to attack your freedom unless you can nullify the attack.

1 “Nine Inch Nails Made at Least $750k from CC Release in Two Days,” posted
by Cory Doctorow, 5 March 2008, http://boingboing.net/2008/03/05/
nine-inch-nails-made.html.

2 Mike Masnick, “The Future of Music Business Models (and Those Who Are
Already There),” 25 January 2010, http://techdirt.com/articles/20091119/
1634117011.shtml.

3 Kevin Kelly is a commentator on digital culture and the founder of Wired maga-
zine.

4 Kevin Kelly, “1,000 True Fans,” 4 March 2008, http://kk.org/thetechnium/
archives/2008/03/1000_true_fans.php.

5 See http://mecenatglobal.org/ for more information.
6 The SGAE is Spain’s main copyright collective for composers, authors, and pub-

lishers.

http://boingboing.net/2008/03/05/nine-inch-nails-made.html
http://boingboing.net/2008/03/05/nine-inch-nails-made.html
http://techdirt.com/articles/20091119/1634117011.shtml
http://techdirt.com/articles/20091119/1634117011.shtml
http://kk.org/thetechnium/archives/2008/03/1000_true_fans.php
http://kk.org/thetechnium/archives/2008/03/1000_true_fans.php
http://mecenatglobal.org/

Chapter 21: What Is Copyleft? 127

21 What Is Copyleft?

Copyleft is a general method for making a program (or other work) free, and
requiring all modified and extended versions of the program to be free as well.

The simplest way to make a program free software is to put it in the public
domain, uncopyrighted. This allows people to share the program and their
improvements, if they are so minded. But it also allows uncooperative people to
convert the program into proprietary software. They can make changes, many
or few, and distribute the result as a proprietary product. People who receive
the program in that modified form do not have the freedom that the original
author gave them; the middleman has stripped it away.

In the GNU Project, our aim is to give all users the freedom to redistribute
and change GNU software. If middlemen could strip off the freedom, we might
have many users, but those users would not have freedom. So instead of putting
GNU software in the public domain, we “copyleft” it. Copyleft says that anyone
who redistributes the software, with or without changes, must pass along the
freedom to further copy and change it. Copyleft guarantees that every user has
freedom.

Copyleft also provides an incentive for other programmers to add to free
software. Important free programs such as the GNU C++ compiler exist only
because of this.

Copyleft also helps programmers who want to contribute improvements to
free software get permission to do so. These programmers often work for com-
panies or universities that would do almost anything to get more money. A
programmer may want to contribute her changes to the community, but her
employer may want to turn the changes into a proprietary software product.

When we explain to the employer that it is illegal to distribute the improved
version except as free software, the employer usually decides to release it as free
software rather than throw it away.

To copyleft a program, we first state that it is copyrighted; then we add
distribution terms, which are a legal instrument that gives everyone the rights
to use, modify, and redistribute the program’s code, or any program derived
from it, but only if the distribution terms are unchanged. Thus, the code and
the freedoms become legally inseparable.

Proprietary software developers use copyright to take away the users’ free-
dom; we use copyright to guarantee their freedom. That’s why we reverse the
name, changing “copyright” into “copyleft.”

Copyright c© 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009 Free Software Foundation, Inc.

This essay was originally published on http://gnu.org, in 1996. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

128 Free Software, Free Society, 2nd ed.

Copyleft is a way of using of the copyright on the program. It doesn’t mean
abandoning the copyright; in fact, doing so would make copyleft impossible.
The “left” in “copyleft” is not a reference to the verb “to leave”—only to the
direction which is the inverse of “right.”

Copyleft is a general concept, and you can’t use a general concept directly;
you can only use a specific implementation of the concept. In the GNU Project,
the specific distribution terms that we use for most software are contained in
the GNU General Public License (p. 171). The GNU General Public License is
often called the GNU GPL for short. There is also a Frequently Asked Questions
page about the GNU GPL, at http://gnu.org/licenses/gpl-faq.html. You
can also read about why the FSF gets copyright assignments from contributors,
at http://gnu.org/copyleft/why-assign.html.

An alternate form of copyleft, the GNU Lesser General Public License
(LGPL) (p. 189), applies to a few (but not all) GNU libraries. To learn more
about properly using the LGPL, please read the article “Why You Shouldn’t
Use the Lesser GPL for Your Next Library,” available at http://gnu.org/

philosophy/why-not-lgpl.html.
The GNU Free Documentation License (FDL) (p. 193) is a form of copyleft

intended for use on a manual, textbook or other document to assure everyone
the effective freedom to copy and redistribute it, with or without modifications,
either commercially or noncommercially.

The appropriate license is included in many manuals and in each GNU source
code distribution.

All these licenses are designed so that you can easily apply them to your own
works, assuming you are the copyright holder. You don’t have to modify the
license to do this, just include a copy of the license in the work, and add notices
in the source files that refer properly to the license.

Using the same distribution terms for many different programs makes it easy
to copy code between various different programs. When they all have the same
distribution terms, there is no problem. The Lesser GPL, version 2, includes
a provision that lets you alter the distribution terms to the ordinary GPL, so
that you can copy code into another program covered by the GPL. Version 3
of the Lesser GPL is built as an exception added to GPL version 3, making the
compatibility automatic.

If you would like to copyleft your program with the GNU GPL or the GNU
LGPL, please see the license instructions page, at http://gnu.org/copyleft/
gpl-howto.html, for advice. Please note that you must use the entire text of
the license you choose. Each is an integral whole, and partial copies are not
permitted.

If you would like to copyleft your manual with the GNU FDL, please see the
instructions at the end of the FDL text (p. 201), and the GFDL instructions
page, at http://gnu.org/copyleft/fdl-howto.html. Again, partial copies
are not permitted.

http://gnu.org/licenses/gpl-faq.html
http://gnu.org/copyleft/why-assign.html
http://gnu.org/philosophy/why-not-lgpl.html
http://gnu.org/philosophy/why-not-lgpl.html
http://gnu.org/copyleft/gpl-howto.html
http://gnu.org/copyleft/gpl-howto.html
http://gnu.org/copyleft/fdl-howto.html

Chapter 22: Copyleft: Pragmatic Idealism 129

22 Copyleft: Pragmatic Idealism

Every decision a person makes stems from the person’s values and goals. People
can have many different goals and values; fame, profit, love, survival, fun, and
freedom, are just some of the goals that a good person might have. When the
goal is a matter of principle, we call that idealism.

My work on free software is motivated by an idealistic goal: spreading free-
dom and cooperation. I want to encourage free software to spread, replacing
proprietary software that forbids cooperation, and thus make our society better.

That’s the basic reason why the GNU General Public License is written the
way it is—as a copyleft. All code added to a GPL-covered program must be free
software, even if it is put in a separate file. I make my code available for use in
free software, and not for use in proprietary software, in order to encourage other
people who write software to make it free as well. I figure that since proprietary
software developers use copyright to stop us from sharing, we cooperators can
use copyright to give other cooperators an advantage of their own: they can use
our code.

Not everyone who uses the GNU GPL has this goal. Many years ago, a friend
of mine was asked to rerelease a copylefted program under noncopyleft terms,
and he responded more or less like this: “Sometimes I work on free software,
and sometimes I work on proprietary software—but when I work on proprietary
software, I expect to get paid.”

He was willing to share his work with a community that shares software, but
saw no reason to give a handout to a business making products that would be
off-limits to our community. His goal was different from mine, but he decided
that the GNU GPL was useful for his goal too.

If you want to accomplish something in the world, idealism is not enough—
you need to choose a method that works to achieve the goal. In other words,
you need to be “pragmatic.” Is the GPL pragmatic? Let’s look at its results.

Consider GNU C++. Why do we have a free C++ compiler? Only because
the GNU GPL said it had to be free. GNU C++ was developed by an industry
consortium, MCC, starting from the GNU C compiler. MCC normally makes its
work as proprietary as can be. But they made the C++ front end free software,
because the GNU GPL said that was the only way they could release it. The C++
front end included many new files, but since they were meant to be linked with
GCC, the GPL did apply to them. The benefit to our community is evident.

Consider GNU Objective C. NeXT initially wanted to make this front end
proprietary; they proposed to release it as ‘.o’ files, and let users link them with
the rest of GCC, thinking this might be a way around the GPL’s requirements.

Copyright c© 1998, 2003 Free Software Foundation, Inc.
This version of this essay is part of Free Software, Free Society: Selected Essays

of Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

130 Free Software, Free Society, 2nd ed.

But our lawyer said that this would not evade the requirements, that it was not
allowed. And so they made the Objective C front end free software.

Those examples happened years ago, but the GNU GPL continues to bring
us more free software.

Many GNU libraries are covered by the GNU Lesser General Public License,
but not all. One GNU library which is covered by the ordinary GNU GPL is
Readline, which implements command-line editing. I once found out about a
nonfree program which was designed to use Readline, and told the developer
this was not allowed. He could have taken command-line editing out of the
program, but what he actually did was rerelease it under the GPL. Now it is
free software.

The programmers who write improvements to GCC (or Emacs, or Bash,
or Linux, or any GPL-covered program) are often employed by companies or
universities. When the programmer wants to return his improvements to the
community, and see his code in the next release, the boss may say, “Hold on
there—your code belongs to us! We don’t want to share it; we have decided to
turn your improved version into a proprietary software product.”

Here the GNU GPL comes to the rescue. The programmer shows the boss
that this proprietary software product would be copyright infringement, and the
boss realizes that he has only two choices: release the new code as free software,
or not at all. Almost always he lets the programmer do as he intended all along,
and the code goes into the next release.

The GNU GPL is not Mr. Nice Guy. It says no to some of the things that
people sometimes want to do. There are users who say that this is a bad thing—
that the GPL “excludes” some proprietary software developers who “need to be
brought into the free software community.”

But we are not excluding them from our community; they are choosing not
to enter. Their decision to make software proprietary is a decision to stay out
of our community. Being in our community means joining in cooperation with
us; we cannot “bring them into our community” if they don’t want to join.

What we can do is offer them an inducement to join. The GNU GPL is
designed to make an inducement from our existing software: “If you will make
your software free, you can use this code.” Of course, it won’t win ’em all, but
it wins some of the time.

Proprietary software development does not contribute to our community, but
its developers often want handouts from us. Free software users can offer free
software developers strokes for the ego—recognition and gratitude—but it can
be very tempting when a business tells you, “Just let us put your package in
our proprietary program, and your program will be used by many thousands of
people!” The temptation can be powerful, but in the long run we are all better
off if we resist it.

The temptation and pressure are harder to recognize when they come indi-
rectly, through free software organizations that have adopted a policy of catering
to proprietary software. The X Consortium (and its successor, the Open Group)
offers an example: funded by companies that made proprietary software, they

Chapter 22: Copyleft: Pragmatic Idealism 131

strived for a decade to persuade programmers not to use copyleft. When the
Open Group tried to make X11R6.4 nonfree software, those of us who had re-
sisted that pressure were glad that we did.

In September 1998, several months after X11R6.4 was released with non-
free distribution terms, the Open Group reversed its decision and rereleased it
under the same noncopyleft free software license that was used for X11R6.3.
Thank you, Open Group—but this subsequent reversal does not invalidate the
conclusions we draw from the fact that adding the restrictions was possible.

Pragmatically speaking, thinking about greater long-term goals will
strengthen your will to resist this pressure. If you focus your mind on the
freedom and community that you can build by staying firm, you will find the
strength to do it. “Stand for something, or you will fall for anything.”

And if cynics ridicule freedom, ridicule community. . . if “hard-nosed realists”
say that profit is the only ideal. . . just ignore them, and use copyleft all the same.

Part IV:

Software Patents:

Danger to Programmers

Chapter 23: Anatomy of a Trivial Patent 135

23 Anatomy of a Trivial Patent

Programmers are well aware that many of the existing software patents cover
laughably obvious ideas. Yet the patent system’s defenders often argue that
these ideas are nontrivial, obvious only in hindsight. And it is surprisingly
difficult to defeat them in debate. Why is that?

One reason is that any idea can be made to look complex when analyzed to
death. Another reason is that these trivial ideas often look quite complex as
described in the patents themselves. The patent system’s defenders can point to
the complex description and say, “How can anything this complex be obvious?”

I will use an example to show you how. Here’s claim number one from US
patent number 5,963,916, applied for in October 1996:

1. A method for enabling a remote user to preview a portion of a pre-
recorded music product from a network web site containing pre-selected
portions of different pre-recorded music products, using a computer, a com-
puter display and a telecommunications link between the remote user’s com-
puter and the network web site, the method comprising the steps of:

• using the remote user’s computer to establish a telecommunications
link to the network web site wherein the network web site comprises
(i) a central host server coupled to a communications network for re-
trieving and transmitting the pre-selected portion of the pre-recorded
music product upon request by a remote user and (ii) a central stor-
age device for storing pre-selected portions of a plurality of different
pre-recorded music products;

• transmitting user identification data from the remote user’s computer
to the central host server thereby allowing the central host server to
identify and track the user’s progress through the network web site;

• choosing at least one pre-selected portion of the pre-recorded music
products from the central host server;

• receiving the chosen pre-selected portion of the pre-recorded products;
and

• interactively previewing the received chosen pre-selected portion of the
pre-recorded music product.

That sure looks like a complex system, right? Surely it took a real clever guy
to think of this? No, but it took cleverness to make it seem so complex. Let’s
analyze where the complexity comes from:

1. A method for enabling a remote user to preview a portion of a pre-
recorded music product from a network web site containing pre-selected
portions

Copyright c© 2006 Richard Stallman
This essay was originally published on http://gnu.org, in 2006. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

136 Free Software, Free Society, 2nd ed.

That states the principal part of their idea. They put selections from certain
pieces of music on a server so a user can listen to them.

of different pre-recorded music products,

This emphasizes their server stores selections from more than one piece of music.
It is a basic principle of computer science is that if a computer can do a thing

once, it can do that thing many times, on different data each time. Many patents
pretend that applying this principle to a specific case makes an “invention.”

using a computer, a com-
puter display and a telecommunications link between the remote user’s com-
puter and the network web site,

This says they are using a server on a network.

the method comprising the steps of:

• using the remote user’s computer to establish a telecommunications
link to the network web site

This says that the user connects to the server over the network. (That’s the way
one uses a server.)

wherein the network web site comprises
(i) a central host server coupled to a communications network

This informs us that the server is on the net. (That is typical of servers.)

for re-
trieving and transmitting the pre-selected portion of the pre-recorded
music product upon request by a remote user

This repeats the general idea stated in the first two lines.

and (ii) a central stor-
age device for storing pre-selected portions of a plurality of different
pre-recorded music products;

They have decided to put a hard disk (or equivalent) in their computer and store
the music samples on that. Ever since around 1980, this has been the normal
way to store anything on a computer for rapid access.

Note how they emphasize once again the fact that they can store more than
one selection on this disk. Of course, every file system will let you store more
than one file.

• transmitting user identification data from the remote user’s computer
to the central host server thereby allowing the central host server to
identify and track the user’s progress through the network web site;

This says that they keep track of who you are and what you access—a common
(though nasty) thing for web servers to do. I believe it was common already in
1996.

• choosing at least one pre-selected portion of the pre-recorded music
products from the central host server;

Chapter 23: Anatomy of a Trivial Patent 137

In other words, the user clicks to say which link to follow. That is typical for
web servers; if they had found another way to do it, that might have been an
invention.

• receiving the chosen pre-selected portion of the pre-recorded products;
and

When you follow a link, your browser reads the contents. This is typical behavior
for a web browser.

• interactively previewing the received chosen pre-selected portion of the
pre-recorded music product.

This says that your browser plays the music for you. (That is what many
browsers do, when you follow a link to an audio file.)

Now you see how they padded this claim to make it into a complex idea: they
combined their own idea (stated in two lines of text) with important aspects of
what computers, networks, web servers, and web browsers do. This adds up to
the so-called invention for which they received the patent.

This example is typical of software patents. Even the occasional patent whose
idea is nontrivial has the same sort of added complication.

Now look at a subsequent claim:

3. The method of [149]claim 1 wherein the central memory device comprises
a plurality of compact disc-read only memory (CD-ROMs).

What they are saying here is, “Even if you don’t think that claim 1 is really an
invention, using CD-ROMs to store the data makes it an invention for sure. An
average system designer would never have thought of storing data on a CD.”

Now look at the next claim:

4. The method of [150]claim 1 wherein the central memory device comprises
a RAID array drive.

A RAID array is a group of disks set up to work like one big disk, with the special
feature that, even if one of the disks in the array has a failure and stops working,
all the data are still available on the other disks in the group. Such arrays have
been commercially available since long before 1996, and are a standard way of
storing data for high availability. But these brilliant inventors have patented the
use of a RAID array for this particular purpose.

Trivial as it is, this patent would not necessarily be found legally invalid
if there is a lawsuit about it. Not only the US Patent Office but the courts
as well tend to apply a very low standard when judging whether a patent is
“unobvious.” This patent might pass muster, according to them.

What’s more, the courts are reluctant to overrule the Patent Office, so there
is a better chance of getting a patent overturned if you can show a court prior art
that the Patent Office did not consider. If the courts are willing to entertain a
higher standard in judging unobviousness, it helps to save the prior art for them.
Thus, the proposals to “make the system work better” by providing the Patent
Office with a better database of prior art could instead make things worse.

138 Free Software, Free Society, 2nd ed.

It is very hard to make a patent system behave reasonably; it is a complex
bureaucracy and tends to follow its structural imperatives regardless of what
it is “supposed” to do. The only practical way to get rid of the many obvious
patents on software features and business practices is to get rid of all patents
in those fields. Fortunately, that would be no loss: the unobvious patents in
the software field do no good either. What software patents do is put software
developers and users under threat.

The patent system is supposed, intended, to promote progress, and those who
benefit from software patents ask us to believe without question that they do
have that effect. But programmers’ experience shows otherwise. New theoretical
analysis shows that this is no paradox. (See http://researchoninnovation.

org/patent.pdf.) There is no reason why society should expose software de-
velopers and users to the danger of software patents.

http://researchoninnovation.org/patent.pdf
http://researchoninnovation.org/patent.pdf

Chapter 24: Software Patents and Literary Patents 139

24 Software Patents and Literary Patents

When politicians consider the question of software patents, they are usually vot-
ing blind; not being programmers, they don’t understand what software patents
really do. They often think patents are similar to copyright law (“except for some
details”)—which is not the case. For instance, when I publicly asked Patrick
Devedjian, then Minister for Industry in France, how France would vote on the
issue of software patents, Devedjian responded with an impassioned defense of
copyright law, praising Victor Hugo for his role in the adoption of copyright.
(The misleading term “intellectual property” promotes this confusion—one of
the reasons it should never be used.)

Those who imagine effects like those of copyright law cannot grasp the dis-
astrous effects of software patents. We can use Victor Hugo as an example to
illustrate the difference.

A novel and a modern complex program have certain points in common:
each one is large, and implements many ideas in combination. So let’s follow the
analogy, and suppose that patent law had been applied to novels in the 1800s;
suppose that states such as France had permitted the patenting of literary ideas.
How would this have affected Victor Hugo’s writing? How would the effects of
literary patents compare with the effects of literary copyright?

Consider Victor Hugo’s novel Les Misérables. Since he wrote it, the copyright
belonged only to him. He did not have to fear that some stranger could sue him
for copyright infringement and win. That was impossible, because copyright
covers only the details of a work of authorship, not the ideas embodied in them,
and it only restricts copying. Hugo had not copied Les Misérables, so he was
not in danger from copyright.

Patents work differently. Patents cover ideas; each patent is a monopoly on
practicing some idea, which is described in the patent itself. Here’s one example
of a hypothetical literary patent:

• Claim 1: a communication process that represents in the mind of a reader
the concept of a character who has been in jail for a long time and becomes
bitter towards society and humankind.

• Claim 2: a communication process according to claim 1, wherein said char-
acter subsequently finds moral redemption through the kindness of another.

• Claim 3: a communication process according to claims 1 and 2, wherein
said character changes his name during the story.

Copyright c© 2005, 2007, 2008, 2009 Richard Stallman
This essay was originally published on http://guardian.co.uk, on 23 June 2005.

It was then titled “Patent Absurdity” and focused on the proposed European
software patent directive. This version is part of Free Software, Free Society:
Selected Essays of Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://guardian.co.uk

140 Free Software, Free Society, 2nd ed.

If such a patent had existed in 1862 when Les Misérables was published, the novel
would have conflicted with all three claims, since all these things happened to
Jean Valjean in the novel. Victor Hugo could have been sued, and if sued, he
would have lost. The novel could have been prohibited—in effect, censored—by
the patent holder.

Now consider this hypothetical literary patent:

• Claim 1: a communication process that represents in the mind of a reader
the concept of a character who has been in jail for a long time and subse-
quently changes his name.

Les Misérables would have been prohibited by that patent too, because this de-
scription too fits the life story of Jean Valjean. And here’s another hypothetical
patent:

• Claim 1: a communication process that represents in the mind of a reader
the concept of a character who finds moral redemption and then changes
his name.

Jean Valjean would have been forbidden by this patent too.
All three patents would cover, and prohibit, the life story of this one charac-

ter. They overlap, but they do not precisely duplicate each other, so they could
all be valid simultaneously; all three patent holders could have sued Victor Hugo.
Any one of them could have prohibited publication of Les Misérables.

This patent also could have been violated:

• Claim 1: a communication process that presents a character whose given
name matches the last syllable of his family name.

through the name “Jean Valjean,” but at least this patent would have been easy
to avoid.

You might think that these ideas are so simple that no patent office would
have issued them. We programmers are often amazed by the simplicity of the
ideas that real software patents cover—for instance, the European Patent Office
has issued a patent on the progress bar, and a patent on accepting payment via
credit cards. These patents would be laughable if they were not so dangerous.

Other aspects of Les Misérables could also have run afoul of patents. For
instance, there could have been a patent on a fictionalized portrayal of the Battle
of Waterloo, or a patent on using Parisian slang in fiction. Two more lawsuits.
In fact, there is no limit to the number of different patents that might have
been applicable for suing the author of a work such as Les Misérables. All the
patent holders would say they deserved a reward for the literary progress that
their patented ideas represent, but these obstacles would not promote progress
in literature, they would only obstruct it.

However, a very broad patent could have made all these issues irrelevant.
Imagine a patent with broad claims like these:

Chapter 24: Software Patents and Literary Patents 141

• A communication process structured with narration that continues through
many pages.

• A narration structure sometimes resembling a fugue or improvisation.

• Intrigue articulated around the confrontation of specific characters, each in
turn setting traps for the others.

• Narration that presents many layers of society.

• Narration that shows the wheels of hidden conspiracy.

Who would the patent holders have been? They could have been other novelists,
perhaps Dumas or Balzac, who had written such novels—but not necessarily. It
isn’t required to write a program to patent a software idea, so if our hypothetical
literary patents follow the real patent system, these patent holders would not
have had to write novels, or stories, or anything—except patent applications.
Patent parasite companies, businesses that produce nothing except threats and
lawsuits, are booming nowadays.

Given these broad patents, Victor Hugo would not have reached the point of
asking what patents might get him sued for using the character of Jean Valjean,
because he could not even have considered writing a novel of this kind.

This analogy can help nonprogrammers see what software patents do. Soft-
ware patents cover features, such as defining abbreviations in a word processor,
or natural order recalculation in a spreadsheet. Patents cover algorithms that
programs need to use. Patents cover aspects of file formats, such as Microsoft’s
OOXML format. MPEG 2 video format is covered by 39 different US patents.

Just as one novel could run afoul of many different literary patents at once,
one program can be prohibited by many different patents at once. It is so
much work to identify all the patents that appear to apply to a large program
that only one such study has been done. A 2004 study of Linux, the kernel
of the GNU/Linux operating system, found 283 different US software patents
that seemed to cover it. That is to say, each of these 283 different patents
forbids some computational process found somewhere in the thousands of pages
of source code of Linux. At the time, Linux was around 1 percent of the whole
GNU/Linux system. How many patents might there be that a distributor of the
whole system could be sued under?

The way to prevent software patents from bollixing software development is
simple: don’t authorize them. This ought to be easy, since most patent laws
have provisions against software patents. They typically say that “software per
se” cannot be patented. But patent offices around the world are trying to twist
the words and issuing patents on the ideas implemented in programs. Unless
this is blocked, the result will be to put all software developers in danger.

Chapter 25: The Danger of Software Patents 143

25 The Danger of Software Patents

This is an unedited transcript of the talk presented by Richard Stallman
on 8 October 2009 at Victoria University of Wellington, in Wellington, New
Zealand.

I’m most known for starting the free software movement and leading development
of the GNU operating system—although most of the people who use the system
mistakenly believe it’s Linux and think it was started by somebody else a decade
later. But I’m not going to be speaking about any of that today. I’m here to
talk about a legal danger to all software developers, distributors, and users: the
danger of patents—on computational ideas, computational techniques, an idea
for something you can do on a computer.

Now, to understand this issue, the first thing you need to realize is that patent
law has nothing to do with copyright law—they’re totally different. Whatever
you learn about one of them, you can be sure it doesn’t apply to the other.

So, for example, any time a person makes a statement about “intellectual
property,” that’s spreading confusion, because it’s lumping together not only
these two laws but also at least a dozen others. They’re all different, and the
result is any statement which purports to be about “intellectual property” is pure
confusion—either the person making the statement is confused, or the person is
trying to confuse others. But either way, whether it’s accidental or malicious,
it’s confusion.

Protect yourself from this confusion by rejecting any statement which makes
use of that term. The only way to make thoughtful comments and think clear
thoughts about any one of these laws is to distinguish it first from all the others,
and talk or think about one particular law, so that we can understand what
it actually does and then form conclusions about it. So I’ll be talking about
patent law, and what happens in those countries which have allowed patent law
to restrict software.

So, what does a patent do? A patent is an explicit, government-issued
monopoly on using a certain idea. In the patent there’s a part called the claims,
which describe exactly what you’re not allowed to do (although they’re written
in a way you probably can’t understand). It’s a struggle to figure out what those
prohibitions actually mean, and they may go on for many pages of fine print.

So the patent typically lasts for 20 years, which is a fairly long time in our
field. Twenty years ago there was no World Wide Web—a tremendous amount
of the use of computers goes on in an area which wasn’t even possible to propose

Copyright c© 2009 Richard Stallman
This transcript was originally published on http://gnu.org, in 2009. This

version is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 2nd ed. (Boston: GNU Press, 2010).

This chapter is licensed under the Creative Commons Attribution-NoDerivs 3.0 United
States License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nd/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California 94105, USA.

http://gnu.org
http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/

144 Free Software, Free Society, 2nd ed.

20 years ago. So of course everything that people do on it is something that’s
new since 20 years ago—at least in some aspect it is new. So if patents had been
applied for we’d be prohibited from doing all of it, and we may be prohibited
from doing all of it in countries that have been foolish enough to have such a
policy.

Most of the time, when people describe the function of the patent system,
they have a vested interest in the system. They may be patent lawyers, or
they may work in the Patent Office, or they may be in the patent office of a
megacorporation, so they want you to like the system.

The Economist once referred to the patent system as “a time-consuming
lottery.” If you’ve ever seen publicity for a lottery, you understand how it works:
they dwell on the very unlikely probability of winning, and they don’t talk
about the overwhelming likelihood of losing. In this way, they intentionally and
systematically present a biased picture of what’s likely to happen to you, without
actually lying about any particular fact.

It’s the same way for the publicity for the patent system: they talk about
what it’s like to walk down the street with a patent in your pocket—or first of
all, what it’s like to get a patent, then what it’s like to have a patent in your
pocket, and every so often you can pull it out and point it at somebody and say,
“Give me your money.”

To compensate for their bias, I’m going to describe it from the other side,
the victim side—what it’s like for people who want to develop or distribute or
run software. You have to worry that any day someone might walk up to you
and point a patent at you and say, “Give me your money.”

If you want to develop software in a country that allows software patents,
and you want to work with patent law, what will you have to do?

You could try to make a list of all the ideas that one might be able to find in
the program that you’re about to write, aside from the fact that you don’t know
that when you start writing the program. [But] even after you finish writing the
program you wouldn’t be able to make such a list.

The reason is. . . in the process you conceived of it in one particular way—
you’ve got a mental structure to apply to your design. And because of that, it will
block you from seeing other structures that somebody might use to understand
the same program—because you’re not coming to it fresh; you already designed
it with one structure in mind. Someone else who sees it for the first time might
see a different structure, which involves different ideas, and it would be hard for
you to see what those other ideas are. But nonetheless they’re implemented in
your program, and those patents could prohibit your program, if those ideas are
patented.

For instance, suppose there were graphical-idea patents and you wanted to
draw a square. Well, you would realize that if there was a patent on a bottom
edge, it would prohibit your square. You could put “bottom edge” on the list of
all ideas implemented in your drawing. But you might not realize that somebody
else with a patent on bottom corners could sue you easily also, because he could

Chapter 25: The Danger of Software Patents 145

take your drawing and turn it by 45 degrees. And now your square is like this,
and it has a bottom corner.

So you couldn’t make a list of all the ideas which, if patented, could prohibit
your program.

What you might try to do is find out all the ideas that are patented that
might be in your program. Now you can’t do that actually, because patent
applications are kept secret for at least 18 months; and the result is the Patent
Office could be considering now whether to issue a patent, and they won’t tell
you. And this is not just an academic, theoretical possibility.

For instance, in 1984 the Compress program was written, a program for
compressing files using the data compression algorithm, and at that time there
was no patent on that algorithm for compressing files. The author got the
algorithm from an article in a journal. That was when we thought that the
purpose of computer science journals was to publish algorithms so people could
use them.

He wrote this program, he released it, and in 1985 a patent was issued on that
algorithm. But the patent holder was cunning and didn’t immediately go around
telling people to stop using it. The patent holder figured, “Let’s let everybody
dig their grave deeper.” A few years later they started threatening people; it
became clear we couldn’t use Compress, so I asked for people to suggest other
algorithms we could use for compressing files.

And somebody wrote and said, “I developed another data compression algo-
rithm that works better, I’ve written a program, I’d like to give it to you.” So
we got ready to release it, and a week before it was ready to be released, I read
in the New York Times weekly patent column, which I rarely saw—it’s a couple
of times a year I might see it—but just by luck I saw that someone had gotten
a patent for “inventing a new method of compressing data.” And so I said we
had better look at this, and sure enough it covered the program we were about
to release. But it could have been worse: the patent could have been issued a
year later, or two years later, or three years later, or five years later.

Anyway, someone else came up with another, even better compression al-
gorithm, which was used in the program gzip, and just about everybody who
wanted to compress files switched to gzip, so it sounds like a happy ending. But
you’ll hear more later. It’s not entirely so happy.

So, you can’t find out about the patents that are being considered even
though they may prohibit your work once they come out, but you can find out
about the already issued patents. They’re all published by the Patent Office.
The problem is you can’t read them all, because there are too many of them.

In the US I believe there are hundreds of thousands of software patents;
keeping track of them would be a tremendous job. So you’re going to have to
search for relevant patents. And you’ll find a lot of relevant patents, but you
won’t necessarily find them all.

For instance, in the 80s and 90s, there was a patent on “natural order recal-
culation” in spreadsheets. Somebody once asked me for a copy of it, so I looked
in our computer file which lists the patent numbers. And then I pulled out the

146 Free Software, Free Society, 2nd ed.

drawer to get the paper copy of this patent and xeroxed it and sent it to him.
And when he got it, he said, “I think you sent me the wrong patent. This is
something about compilers.” So I thought maybe our file has the wrong number
in it. I looked in it again, and sure enough it said, “A method for compiling for-
mulas into object code.” So I started to read it to see if it was indeed the wrong
patent. I read the claims, and sure enough it was the natural order recalculation
patent, but it didn’t use those terms. It didn’t use the term “spreadsheet.” In
fact, what the patent prohibited was dozens of different ways of implementing
topological sort—all the ways they could think of. But I don’t think it used the
term “topological sort.”

So if you were writing a spreadsheet and you tried to find relevant patents by
searching, you might have found a lot of patents. But you wouldn’t have found
this one until you told somebody, “Oh, I’m working on a spreadsheet,” and he
said, “Oh, did you know those other companies that are making spreadsheets
are getting sued?” Then you would have found out.

Well, you can’t find all the patents by searching, but you can find a lot of
them. And then you’ve got to figure out what they mean, which is hard, because
patents are written in tortuous legal language which is very hard to understand
the real meaning of. So you’re going to have to spend a lot of time talking with
an expensive lawyer explaining what you want to do in order to find out from
the lawyer whether you’re allowed to do it.

Even the patent holders often can’t recognize just what their patents mean.
For instance, there’s somebody named Paul Heckel who released a program for
displaying a lot of data on a small screen, and based on a couple of the ideas in
that program he got a couple of patents.

I once tried to find a simple way to describe what claim 1 of one of those
patents covered. I found that I couldn’t find any simpler way of saying it than
what was in the patent itself; and that sentence, I couldn’t manage to keep it
all in my mind at once, no matter how hard I tried.

And Heckel couldn’t follow it either, because when he saw HyperCard, all he
noticed was it was nothing like his program. It didn’t occur to him that the way
his patent was written it might prohibit HyperCard; but his lawyer had that
idea, so he threatened Apple. And then he threatened Apple’s customers, and
eventually Apple made a settlement with him which is secret, so we don’t know
who really won. And this is just an illustration of how hard it is for anybody to
understand what a patent does or doesn’t prohibit.

In fact, I once gave this speech and Heckel was in the audience. And at this
point he jumped up and said, “That’s not true, I just didn’t know the scope of
my protection.” And I said, “Yeah, that’s what I said,” at which point he sat
down and that was the end of my experience being heckled by Heckel. If I had
said no, he probably would have found a way to argue with me.

Anyway, after a long, expensive conversation with a lawyer, the lawyer will
give you an answer like this:

Chapter 25: The Danger of Software Patents 147

If you do something in this area, you’re almost certain to lose a lawsuit;
if you do something in this area, there’s a considerable chance of losing a
lawsuit; and if you really want to be safe you’ve got to stay out of this area.
But there’s a sizeable element of chance in the outcome of any lawsuit.

So now that you have clear, predictable rules for doing business, what are
you actually going to do? Well, there are three things that you could do to deal
with the issue of any particular patent. One is to avoid it, another is to get a
license for it, and the third is to invalidate it. So I’ll talk about these one by
one.

First, there’s the possibility of avoiding the patent, which means, don’t im-
plement what it prohibits. Of course, if it’s hard to tell what it prohibits, it
might be hard to tell what would suffice to avoid it.

A couple of years ago Kodak sued Sun [for] using a patent for something
having to do with object-oriented programming, and Sun didn’t think it was
infringing that patent. But the court decided it was; and when other people
look at that patent they haven’t the faintest idea whether that decision was
right or not. No one can tell what that patent does or doesn’t cover, but Sun
had to pay hundreds of millions of dollars because of violating a completely
incomprehensible law.

Sometimes you can tell what you need to avoid, and sometimes what you
need to avoid is an algorithm.

For instance, I saw a patent for something like the fast Fourier transform, but
it ran twice as fast. Well, if the ordinary FFT is fast enough for your application
then that’s an easy way to avoid this other one. And most of the time that would
work. Once in a while you might be trying to do something where it runs doing
FFT all the time, and it’s just barely fast enough using the faster algorithm.
And then you can’t avoid it, although maybe you could wait a couple of years
for a faster computer. But that’s going to be rare. Most of the time that patent
will to be easy to avoid.

On the other hand, a patent on an algorithm may be impossible to avoid.
Consider the LZW data compression algorithm. Well, as I explained, we found
a better data compression algorithm, and everybody who wanted to compress
files switched to the program gzip which used the better algorithm. And the
reason is, if you just want to compress the file and uncompress it later, you can
tell people to use this program to uncompress it; then you can use any program
with any algorithm, and you only care how well it works.

But LZW is used for other things, too; for instance the PostScript language
specifies operators for LZW compression and LZW uncompression. It’s no use
having another, better algorithm because it makes a different format of data.
They’re not interoperable. If you compress it with the gzip algorithm, you
won’t be able to uncompress it using LZW. So no matter how good your other
algorithm is, and no matter what it is, it just doesn’t enable you to implement
PostScript according to the specs.

But I noticed that users rarely ask their printers to compress things. Gener-
ally the only thing they want their printers to do is to uncompress; and I also

148 Free Software, Free Society, 2nd ed.

noticed that both of the patents on the LZW algorithm were written in such a
way that if your system can only uncompress, it’s not forbidden. These patents
were written so that they covered compression, and they had other claims cover-
ing both compression and uncompression; but there was no claim covering only
uncompression. So I realized that if we implement only the uncompression for
LZW, we would be safe. And although it would not satisfy the specification, it
would please the users sufficiently; it would do what they actually needed. So
that’s how we barely squeaked by avoiding the two patents.

Now there is gif format, for images. That uses the LZW algorithm also. It
didn’t take long for people to define another image format, called png, which
stands for “Png’s Not Gif.” I think it uses the gzip algorithm. And we started
saying to people, “Don’t use gif format, it’s dangerous. Switch to png.” And the
users said, “Well, maybe some day, but the browsers don’t implement it yet,”
and the browser developers said, “We may implement it someday, but there’s
not much demand from users.”

Well, it’s pretty obvious what’s going on—gif was a de facto standard. In
effect, asking people to switch to a different format, instead of their de facto
standard, is like asking everyone in New Zealand to speak Hungarian. People
will say, “Well, yeah, I’ll learn to speak it after everyone else does.” And so
we never succeeded in asking people to stop using gif, even though one of those
patent holders was going around to operators of web sites, threatening to sue
them unless they could prove that all of the gifs on the site were made with
authorized, licensed software.

So gif was a dangerous trap for a large part of our community. We thought
we had an alternative to gif format, namely jpeg, but then somebody said, “I
was just looking through my portfolio of patents”—I think it was somebody
that just bought patents and used them to threaten people—and he said, “and
I found that one of them covers jpeg format.”

Well, jpeg was not a de facto standard, it’s an official standard, issued by a
standards committee; and the committee had a lawyer too. Their lawyer said
he didn’t think that this patent actually covered jpeg format.

So who’s right? Well, this patent holder sued a bunch of companies, and
if there was a decision, it would have said who was right. But I haven’t heard
about a decision; I’m not sure if there ever was one. I think they settled, and the
settlement is almost certainly secret, which means that it didn’t tell us anything
about who’s right.

These are fairly lightweight cases: one patent on jpeg, two patents on the
LZW algorithm used in gif. Now you might wonder how come there are two
patents on the same algorithm? It’s not supposed to happen, but it did. And
the reason is that the patent examiners can’t possibly take the time to study
every pair of things they might need to study and compare, because they’re not
allowed to take that much time. And because algorithms are just mathematics,
there’s no way you can narrow down which applications and patents you need
to compare.

Chapter 25: The Danger of Software Patents 149

You see, in physical engineering fields, they can use the physical nature of
what’s going on to narrow things down. For instance, in chemical engineering,
they can say, “What are the substances going in? What are the substances
coming out?” If two different [patent] applications are different in that way,
then they’re not the same process so you don’t need to worry. But the same
math can be represented in ways that can look very different, and until you study
them both together, you don’t realize they’re talking about the same thing. And,
because of this, it’s quite common to see the same thing get patented multiple
times [in software].

Remember that program that was killed by a patent before we released it?
Well, that algorithm got patented twice also. In one little field we’ve seen it
happen in two cases that we ran into—the same algorithm being patented twice.
Well, I think my explanation tells you why that happens.

But one or two patents is a lightweight case. What about mpeg2, the video
format? I saw a list of over 70 patents covering that, and the negotiations
to arrange a way for somebody to license all those patents took longer than
developing the standard itself. The jpeg committee wanted to develop a follow-
on standard, and they gave up. They said there were too many patents; there
was no way to do it.

Sometimes it’s a feature that’s patented, and the only way to avoid that
patent is not to implement that feature. For instance, the users of the word
processor Xywrite once got a downgrade in the mail, which removed a feature.
The feature was that you could define a list of abbreviations. For instance, if you
define “exp” as an abbreviation for “experiment,” then if you type “exp-space”
or “exp-comma,” the “exp” would change automatically to “experiment.”

Then somebody who had a patent on this feature threatened them, and they
concluded that the only thing they could do was to take the feature out. And
so they sent all the users a downgrade.

But they also contacted me, because my Emacs editor had a feature like that
starting from the late 70s. And it was described in the Emacs manual, so they
thought I might be able to help them invalidate that patent. Well, I’m happy
to know I’ve had at least one patentable idea in my life, but I’m unhappy that
someone else patented it.

Fortunately, in fact, that patent was eventually invalidated, and partly on the
strength of the fact that I had published using it earlier. But in the meantime
they had had to remove this feature.

Now, to remove one or two features may not be a disaster. But when you
have to remove 50 features, you could do it, but people are likely to say, “This
program’s no good; it’s missing all the features I want.” So it may not be a
solution. And sometimes a patent is so broad that it wipes out an entire field,
like the patent on public-key encryption, which in fact put public-key encryption
basically off limits for about ten years.

So that’s the option of avoiding the patent—often possible, but sometimes
not, and there’s a limit to how many patents you can avoid.

What about the next possibility, of getting a license for the patent?

150 Free Software, Free Society, 2nd ed.

Well, the patent holder may not offer you a license. It’s entirely up to
him. He could say, “I just want to shut you down.” I once got a letter from
somebody whose family business was making casino games, which were of course
computerized, and he had been threatened by a patent holder who wanted to
make his business shut down. He sent me the patent. Claim 1 was something like
“a network with a multiplicity of computers, in which each computer supports
a multiplicity of games, and allows a multiplicity of game sessions at the same
time.”

Now, I’m sure in the 1980s there was a university that set up a room with
a network of workstations, and each workstation had some kind of windowing
facility. All they had to do was to install multiple games and it would be possible
to display multiple game sessions at once. This is so trivial and uninteresting
that nobody would have bothered to publish an article about doing it. No one
would have been interested in publishing an article about doing it, but it was
worth patenting it. If it had occurred to you that you could get a monopoly on
this trivial thing, then you could shut down your competitors with it.

But why does the Patent Office issue so many patents that seem absurd and
trivial to us?

It’s not because the patent examiners are stupid, it’s because they’re follow-
ing a system, and the system has rules, and the rules lead to this result.

You see, if somebody has made a machine that does something once, and
somebody else designs a machine that will do the same thing, but N times, for
us that’s a for-loop, but for the Patent Office that’s an invention. If there are
machines that can do A, and there are machines that can do B, and somebody
designs a machine that can do A or B, for us that’s an if-then-else statement,
but for the Patent Office that’s an invention. So they have very low standards,
and they follow those standards; and the result is patents that look absurd and
trivial to us. Whether they’re legally valid I can’t say. But every programmer
who sees them laughs.

In any case, I was unable to suggest anything he could do to help himself,
and he had to shut down his business. But most patent holders will offer you a
license. It’s likely to be rather expensive.

But there are some software developers that find it particularly easy to get
licenses, most of the time. Those are the megacorporations. In any field the
megacorporations generally own about half the patents, and they cross-license
each other, and they can make anybody else cross-license if he’s really producing
anything. The result is that they end up painlessly with licenses for almost all
the patents.

IBM wrote an article in its house magazine, Think magazine—I think it’s
issue 5, 1990—about the benefit IBM got from its almost 9,000 US patents at
the time (now it’s up to 45,000 or more). They said that one of the benefits was
that they collected money, but the main benefit, which they said was perhaps
an order of magnitude greater, was “getting access to the patents of others,”
namely cross-licensing.

Chapter 25: The Danger of Software Patents 151

What this means is since IBM, with so many patents, can make almost
everybody give them a cross-license, IBM avoids almost all the grief that the
patent system would have inflicted on anybody else. So that’s why IBM wants
software patents. That’s why the megacorporations in general want software
patents, because they know that by cross-licensing, they will have a sort of
exclusive club on top of a mountain peak. And all the rest of us will be down
here, and there’s no way we can get up there. You know, if you’re a genius, you
might start up a small company and get some patents, but you’ll never get into
IBM’s league, no matter what you do.

Now a lot of companies tell their employees, “Get us patents so we can defend
ourselves” and they mean, “use them to try to get cross-licensing,” but it just
doesn’t work well. It’s not an effective strategy if you’ve got a small number of
patents.

Suppose you’ve got three patents. One points there, one points there, and
one points there, and somebody over there points a patent at you. Well, your
three patents don’t help you at all, because none of them points at him. On
the other hand, sooner or later, somebody in the company is going to notice
that this patent is actually pointing at some people, and [the company] could
threaten them and squeeze money out of them—never mind that those people
didn’t attack this company.

So if your employer says to you, “We need some patents to defend ourselves,
so help us get patents,” I recommend this response:

Boss, I trust you and I’m sure you would only use those patents to defend
the company if it’s attacked. But I don’t know who’s going to be the CEO
of this company in five years. For all I know, it might get acquired by
Microsoft. So I really can’t trust the company’s word to only use these
patents for defense unless I get it in writing. Please put it in writing that
any patents I provide for the company will only be used for self-defense and
collective security, and not for repression, and then I’ll be able to get patents
for the company with a clean conscience.

It would be most interesting to raise this not just in private with your boss,
but also on the company’s discussion list.

The other thing that could happen is that the company could fail and its
assets could be auctioned off, including the patents; and the patents will be
bought by someone who means to use them to do something nasty.

This cross-licensing practice is very important to understand, because this
is what punctures the argument of the software patent advocates who say that
software patents are needed to protect the starving genius. They give you a
scenario which is a series of unlikelihoods.

So let’s look at it. According to this scenario, there’s a brilliant designer of
whatever, who’s been working for years by himself in his attic coming up with
a better way to do whatever it is. And now that it’s ready, he wants to start
a business and mass-produce this thing; and because his idea is so good his
company will inevitably succeed— except for one thing: the big companies will
compete with him and take all his market the away. And because of this, his
business will almost certainly fail, and then he will starve.

152 Free Software, Free Society, 2nd ed.

Well, let’s look at all the unlikely assumptions here.
First of all, that he comes up with this idea working by himself. That’s not

very likely. In a high-tech field, most progress is made by people working in a
field, doing things and talking with people in the field. But I wouldn’t say it’s
impossible, not that one thing by itself.

But anyway the next supposition is that he’s going to start a business and
that it’s going to succeed. Well, just because he’s a brilliant engineer doesn’t
mean that he’s any good at running a business. Most new businesses fail; more
than 95 percent of them, I think, fail within a few years. So that’s probably
what’s going to happen to him, no matter what.

Ok, let’s assume that in addition to being a brilliant engineer who came up
with something great by himself, he’s also talented at running businesses. If he
has a knack for running businesses, then maybe his business won’t fail. After
all, not all new businesses fail, there are a certain few that succeed. Well, if
he understands business, then instead of trying to go head to head with large
companies, he might try to do things that small companies are better at and
have a better chance of succeeding. He might succeed. But let’s suppose it fails
anyway. If he’s so brilliant and has a knack for running businesses, I’m sure he
won’t starve, because somebody will want to give him a job.

So a series of unlikelihoods—it’s not a very plausible scenario. But let’s look
at it anyway.

Because where they go from there is to say the patent system will “protect”
our starving genius, because he can get a patent on this technique. And then
when IBM wants to compete with him, he says, “IBM, you can’t compete with
me, because I’ve got this patent,” and IBM says, “Oh, no, not again!”

Well, here’s what really happens.
IBM says, “Oh, how nice, you have a patent. Well, we have this patent,

and this patent, and this patent, and this patent, and this patent, all of which
cover other ideas implemented in your product, and if you think you can fight
us on all those, we’ll pull out some more. So let’s sign a cross-license agreement,
and that way nobody will get hurt.” Now since we’ve assumed that our genius
understands business, he’s going to realize that he has no choice. He’s going
to sign the cross-license agreement, as just about everybody does when IBM
demands it. And then this means that IBM will get “access” to his patent,
meaning IBM would be free to compete with him just as if there were no patents,
which means that the supposed benefit that they claim he would get by having
this patent is not real. He won’t get this benefit.

The patent might “protect” him from competition from you or me, but not
from IBM—not from the very megacorporations which the scenario says are
the threat to him. You know in advance that there’s got to be a flaw in this
reasoning when people who are lobbyists for megacorporations recommend a
policy supposedly because it’s going to protect their small competitors from
them. If it really were going to do that, they wouldn’t be in favor of it. But this
explains why [software patents] won’t do it.

Chapter 25: The Danger of Software Patents 153

Even IBM can’t always do this, because there are companies that we refer
to as patent trolls or patent parasites, and their only business is using patents
to squeeze money out of people who really make something.

Patent lawyers tell us that it’s really wonderful to have patents in your field,
but they don’t have patents in their field. There are no patents on how to send
or write a threatening letter, no patents on how to file a lawsuit, and no patents
on how to persuade a judge or jury, so even IBM can’t make the patent trolls
cross-license. But IBM figures, “Our competition will have to pay them too; this
is just part of the cost of doing business, and we can live with it.” IBM and the
other megacorporations figure that the general dominion over all activity that
they get from their patents is good for them, and paying off the trolls they can
live with. So that’s why they want software patents.

There are also certain software developers who find it particularly difficult to
get a patent license, and those are the developers of free software. The reason
is that the usual patent license has conditions we can’t possibly fulfill, because
usual patent licenses demand a payment per copy. But when software gives users
the freedom to distribute and make more copies, we have no way to count the
copies that exist.

If someone offered me a patent license for a payment of one-millionth of a
dollar per copy, the total amount of money I’d have to pay maybe is in my pocket
now. Maybe it’s $50, but I don’t know if it’s $50, or $49, or what, because there’s
no way I can count the copies that people have made.

A patent holder doesn’t have to demand a payment per copy; a patent holder
could offer you a license for a single lump sum, but those lump sums tend to be
big, like US$100,000.

And the reason that we’ve been able to develop so much freedom-respecting
software is [that] we can develop software without money, but we can’t pay a
lot of money without money. If we’re forced to pay for the privilege of writing
software for the public, we won’t be able to do it very much.

That’s the possibility of getting a license for the patent. The other possibility
is to invalidate the patent. If the country considers software patents to be
basically valid, and allowed, the only question is whether that particular patent
meets the criteria. It’s only useful to go to court if you’ve got an argument to
make that might prevail.

What would that argument be? You have to find evidence that, years ago,
before the patent was applied for, people knew about the same idea. And you’d
have to find things today that demonstrate that they knew about it publicly at
that time. So the dice were cast years ago, and if they came up favorably for
you, and if you can prove that fact today, then you have an argument to use to
try to invalidate the patent. And it might work.

It might cost you a lot of money to go through this case, and as a result,
a probably invalid patent is a very frightening weapon to be threatened with if
you don’t have a lot of money. There are people who can’t afford to defend their
rights—lots of them. The ones who can afford it are the exception.

154 Free Software, Free Society, 2nd ed.

These are the three things that you might be able to do about each patent
that prohibits something in your program. The thing is, whether each one is
possible depends on different details of the circumstances, so some of the time,
none of them is possible; and when that happens, your project is dead.

But lawyers in most countries tell us, “Don’t try to find the patents in ad-
vance,” and the reason is that the penalty for infringement is bigger if you knew
about the patent. So what they tell you is “Keep your eyes shut. Don’t try
to find out about the patents, just go blindly taking your design decisions, and
hope.”

And of course, with each single design decision, you probably don’t step on
a patent. Probably nothing happens to you. But there are so many steps you
have to take to get across the minefield, it’s very unlikely you will get through
safely. And of course, the patent holders don’t all show up at the same time, so
you don’t know how many there are going to be.

The patent holder of the natural order recalculation patent was demanding
5 percent of the gross sales of every spreadsheet. You could imagine paying for
a few such licenses, but what happens when patent holder number 20 comes
along, and wants you to pay out the last remaining 5 percent? And then what
happens when patent holder number 21 comes along?

People in business say that this scenario is amusing but absurd, because your
business would fail long before you got there. They told me that two or three
such licenses would make your business fail. So you’d never get to 20. They
show up one by one, so you never know how many more there are going to be.

Software patents are a mess. They’re a mess for software developers, but in
addition they’re a restriction on every computer user because software patents
restrict what you can do on your computer.

This is very different from patents, for instance, on automobile engines.
These only restrict companies that make cars; they don’t restrict you and me.
But software patents do restrict you and me, and everybody who uses comput-
ers. So we can’t think of them in purely economic terms; we can’t judge this
issue purely in economic terms. There’s something more important at stake.

But even in economic terms, the system is self-defeating, because its purpose
is supposed to be to promote progress. Supposedly by creating this artificial
incentive for people to publish ideas, it’s going to help the field progress. But all
it does is the exact opposite, because the big job in software is not coming up
with ideas, it’s implementing thousands of ideas together in one program. And
software patents obstruct that, so they’re economically self-defeating.

And there’s even economic research showing that this is so—showing how in
a field with a lot of incremental innovation, a patent system can actually reduce
investment in R & D. And of course, it also obstructs development in other
ways. So even if we ignore the injustice of software patents, even if we were
to look at it in the narrow economic terms that are usually proposed, it’s still
harmful.

Chapter 25: The Danger of Software Patents 155

People sometimes respond by saying that “People in other fields have been
living with patents for decades, and they’ve gotten used to it, so why should you
be an exception?”

Now, that question has an absurd assumption. It’s like saying, “Other people
get cancer, why shouldn’t you?” I think every time someone doesn’t get cancer,
that’s good, regardless of what happened to the others. That question is absurd
because of its presupposition that somehow we all have a duty to suffer the harm
done by patents.

But there is a sensible question buried inside it, and that sensible question
is “What differences are there between various fields that might affect what is
good or bad patent policy in those fields?”

There is an important basic difference between fields in regard to how many
patents are likely to prohibit or cover parts of any one product.

Now we have a naive idea in our minds which I’m trying to get rid of, because
it’s not true. And it’s that on any one product there is one patent, and that
patent covers the overall design of that product. So if you design a new product,
it can’t be patented already, and you will have an opportunity to get “the patent”
on that product.

That’s not how things work. In the 1800s, maybe they did, but not now. In
fact, fields fall on a spectrum of how many patents [there are] per product. The
beginning of the spectrum is one, but no field is like that today; fields are at
various places on this spectrum.

The field that’s closest to that is pharmaceuticals. A few decades ago, there
really was one patent per pharmaceutical, at least at any time, because the
patent covered the entire chemical formula of that one particular substance.
Back then, if you developed a new drug, you could be sure it wasn’t already
patented by somebody else and you could get the one patent on that drug.

But that’s not how it works now. Now there are broader patents, so now you
could develop a new drug, and you’re not allowed to make it because somebody
has a broader patent which covers it already.

And there might even be a few such patents covering your new drug si-
multaneously, but there won’t be hundreds. The reason is, our ability to do
biochemical engineering is so limited that nobody knows how to combine so
many ideas to make something that’s useful in medicine. If you can combine a
couple of them you’re doing pretty well at our level of knowledge. But other
fields involve combining more ideas to make one thing.

At the other end of the spectrum is software, where we can combine more
ideas into one usable design than anybody else, because our field is basically
easier than all other fields. I’m presuming that the intelligence of people in our
field is the same as that of people in physical engineering. It’s not that we’re
fundamentally better than they are; it’s that our field is fundamentally easier,
because we’re working with mathematics.

A program is made out of mathematical components, which have a defini-
tion, whereas physical objects don’t have a definition. The matter does what it
does, so through the perversity of matter, your design may not work the way it

156 Free Software, Free Society, 2nd ed.

“should” have worked. And that’s just tough. You can’t say that the matter
has a bug in it, and the physical universe should get fixed. [Whereas] we [pro-
grammers] can make a castle that rests on a mathematically thin line, and it
stays up because nothing weighs anything.

There’re so many complications you have to cope with in physical engineering
that we don’t have to worry about.

For instance, when I put an if-statement inside of a while-loop,

• I don’t have to worry that if this while-loop repeats at the wrong rate, the
if-statement might start to vibrate and it might resonate and crack;

• I don’t have to worry that if it resonates much faster—you know, millions
of times per second—that it might generate radio frequency signals that
might induce wrong values in other parts of the program;

• I don’t have to worry that corrosive fluids from the environment might seep
in between the if-statement and the while-statement and start eating away
at them until the signals don’t pass anymore;

• I don’t have to worry about how the heat generated by my if-statement is
going to get out through the while-statement so that it doesn’t make the
if-statement burn out; and

• I don’t have to worry about how I would take out the broken if-statement
if it does crack, burn, or corrode, and replace it with another if-statement
to make the program run again.

For that matter, I don’t have to worry about how I’m going to insert the
if-statement inside the while-statement every time I produce a copy of the
program. I don’t have to design a factory to make copies of my program, because
there are various general commands that will make copies of anything.

If I want to make copies on CD, I just have to write a master; and there’s one
program I can [use to] make a master out of anything, write any data I want.
I can make a master CD and write it and send it off to a factory, and they’ll
duplicate whatever I send them. I don’t have to design a different factory for
each thing I want to duplicate.

Very often with physical engineering you have to do that; you have to design
products for manufacturability. Designing the factory may even be a bigger job
than designing the product, and then you may have to spend millions of dollars
to build the factory. So with all of this trouble, you’re not going to be able to
put together so many different ideas in one product and have it work.

A physical design with a million nonrepeating different design elements is
a gigantic project. A program with a million different design elements, that’s
nothing. It’s a few hundred thousand lines of code, and a few people will write
that in a few years, so it’s not a big deal. So the result is that the patent system
weighs proportionately heavier on us than it does on people in any other field
who are being held back by the perversity of matter.

A lawyer did a study of one particular large program, namely the kernel
Linux, which is used together with the GNU operating system that I launched.

Chapter 25: The Danger of Software Patents 157

This was five years ago now; he found 283 different US patents, each of which
appeared to prohibit some computation done somewhere in the code of Linux.
At the time I saw an article saying that Linux was 0.25 percent of the whole
system. So by multiplying 300 by 400 we can estimate the number of patents that
would prohibit something in the whole system as being around 100,000. This is
a very rough estimate only, and no more accurate information is available, since
trying to figure it out would be a gigantic task.

Now this lawyer did not publish the list of patents, because that would have
endangered the developers of Linux the kernel, putting them in a position where
the penalties if they were sued would be greater. He didn’t want to hurt them;
he wanted to demonstrate how bad this problem is, of patent gridlock.

Programmers can understand this immediately, but politicians usually don’t
know much about programming; they usually imagine that patents are basically
much like copyrights, only somehow stronger. They imagine that since software
developers are not endangered by the copyrights on their work, that they won’t
be endangered by the patents on their work either. They imagine that, since
when you write a program you have the copyright, [therefore likewise] if you
write a program you have the patents also. This is false—so how do we give
them a clue what patents would really do? What they really do in countries like
the US?

I find it’s useful to make an analogy between software and symphonies. Here’s
why it’s a good analogy.

A program or symphony combines many ideas. A symphony combines many
musical ideas. But you can’t just pick a bunch of ideas and say “Here’s my
combination of ideas, do you like it?” Because in order to make them work you
have to implement them all. You can’t just pick musical ideas and list them and
say, “Hey, how do you like this combination?” You can’t hear that [list]. You
have to write notes which implement all these ideas together.

The hard task, the thing most of us wouldn’t be any good at, is writing all
these notes to make the whole thing sound good. Sure, lots of us could pick
musical ideas out of a list, but we wouldn’t know how to write a good-sounding
symphony to implement those ideas. Only some of us have that talent. That’s
the thing that limits you. I could probably invent a few musical ideas, but I
wouldn’t know how to use them to any effect.

So imagine that it’s the 1700s, and the governments of Europe decide that
they want to promote the progress of symphonic music by establishing a system
of musical idea patents, so that any musical idea described in words could be
patented.

For instance, using a particular sequence of notes as a motif could be
patented, or a chord progression could be patented, or a rhythmic pattern could
be patented, or using certain instruments by themselves could be patented, or
a format of repetitions in a movement could be patented. Any sort of musical
idea that could be described in words would have been patentable.

Now imagine that it’s 1800 and you’re Beethoven, and you want to write a
symphony. You’re going to find it’s much harder to write a symphony you don’t

158 Free Software, Free Society, 2nd ed.

get sued for than to write one that sounds good, because you have to thread
your way around all the patents that exist. If you complained about this, the
patent holders would say, “Oh, Beethoven, you’re just jealous because we had
these ideas first. Why don’t you go and think of some ideas of your own?”

Now Beethoven had ideas of his own. The reason he’s considered a great
composer is because of all of the new ideas that he had, and he actually used.
And he knew how to use them in such a way that they would work, which was
to combine them with lots of well-known ideas. He could put a few new ideas
into a composition together with a lot of old and uncontroversial ideas. And
the result was a piece that was controversial, but not so much so that people
couldn’t get used to it.

To us, Beethoven’s music doesn’t sound controversial; I’m told it was, when
it was new. But because he combined his new ideas with a lot of known ideas,
he was able to give people a chance to stretch a certain amount. And they
could, which is why to us those ideas sound just fine. But nobody, not even a
Beethoven, is such a genius that he could reinvent music from zero, not using
any of the well-known ideas, and make something that people would want to
listen to. And nobody is such a genius he could reinvent computing from zero,
not using any of the well-known ideas, and make something that people want to
use.

When the technological context changes so frequently, you end up with a
situation where what was done 20 years ago is totally inadequate. Twenty years
ago there was no World Wide Web. So, sure, people did a lot of things with
computers back then, but what they want to do today are things that work with
the World Wide Web. And you can’t do that using only the ideas that were
known 20 years ago. And I presume that the technological context will continue
to change, creating fresh opportunities for somebody to get patents that give
the shaft to the whole field.

Big companies can even do this themselves. For instance, a few years ago
Microsoft decided to make a phony open standard for documents and to get
it approved as a standard by corrupting the International Standards Organi-
zation, which they did. But they designed it using something that Microsoft
had patented. Microsoft is big enough that it can start with a patent, design
a format or protocol to use that patented idea (whether it’s helpful or not), in
such a way that there’s no way to be compatible unless you use that same idea
too. And then Microsoft can make that a de facto standard with or without
help from corrupted standards bodies. Just by its weight it can push people into
using that format, and that basically means that they get a stranglehold over
the whole world. So we need to show the politicians what’s really going on here.
We need to show them why this is bad.

Now I’ve heard it said that the reason New Zealand is considering software
patents is that one large company wants to be given some monopolies. To
restrict everyone in the country so that one company will make more money is
the absolute opposite of statesmanship.

Chapter 26: Microsoft’s New Monopoly 159

26 Microsoft’s New Monopoly

This article was written in July 2005. Microsoft adopted a different policy
in 2006, so the specific policies described below and the specific criticisms
of them are only of historical significance. The overall problem remains,
however: Microsoft’s cunningly worded new policy (see http://grokdoc.

net/index.php/EOOXML_objections#Patent_rights_to_implement_the_

Ecma_376_specification_have_not_been_granted) does not give anyone
clear permission to implement OOXML.

European legislators who endorse software patents frequently claim that those
wouldn’t affect free software (or “open source”). Microsoft’s lawyers are deter-
mined to prove they are mistaken.

Leaked internal documents in 1998 said that Microsoft considered the free
software GNU/Linux operating system (referred to therein as “Linux”) as the
principal competitor to Windows, and spoke of using patents and secret file
formats to hold us back.

Because Microsoft has so much market power, it can often impose new stan-
dards at will. It need only patent some minor idea, design a file format, pro-
gramming language, or communication protocol based on it, and then pressure
users to adopt it. Then we in the free software community will be forbidden
to provide software that does what these users want; they will be locked in to
Microsoft, and we will be locked out from serving them.

Previously Microsoft tried to get its patented scheme for spam blocking
adopted as an Internet standard, so as to exclude free software from handling
email. The standards committee in charge rejected the proposal, but Microsoft
said it would try to convince large ISPs to use the scheme anyway.

Now Microsoft is planning to try something similar for Word files.
Several years ago, Microsoft abandoned its documented format for saving

documents, and switched to a new format which was secret. However, the de-
velopers of free software word processors such as AbiWord and OpenOffice.org
experimented assiduously for years to figure out the format, and now those pro-
grams can read most Word files. But Microsoft isn’t licked yet.

The next version of Microsoft Word will use formats that involve a technique
that Microsoft claims to hold a patent on. Microsoft offers a royalty-free patent
license for certain limited purposes, but it is so limited that it does not allow
free software. You can see the license here: http://microsoft.com/whdc/xps/
xpspatentlic.mspx.

Copyright c© 2005, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 2005. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://grokdoc.net/index.php/EOOXML_objections#Patent_rights_to_implement_the_Ecma_376_specification_have_not_been_granted
http://grokdoc.net/index.php/EOOXML_objections#Patent_rights_to_implement_the_Ecma_376_specification_have_not_been_granted
http://grokdoc.net/index.php/EOOXML_objections#Patent_rights_to_implement_the_Ecma_376_specification_have_not_been_granted
http://microsoft.com/whdc/xps/xpspatentlic.mspx
http://microsoft.com/whdc/xps/xpspatentlic.mspx
http://gnu.org

160 Free Software, Free Society, 2nd ed.

Free software is defined as software that respects four fundamental freedoms:
(0) freedom to run the software as you wish, (1) freedom to study the source
code and modify it to do what you wish, (2) freedom to make and redistribute
copies, and (3) freedom to publish modified versions. Only programmers can
directly exercise freedoms 1 and 3, but all users can exercise freedoms 0 and 2,
and all users benefit from the modifications that programmers write and publish.

Distributing an application under Microsoft’s patent license imposes license
terms that prohibit most possible modifications of the software. Lacking freedom
3, the freedom to publish modified versions, it would not be free software. (I
think it could not be “open source” software either, since that definition is
similar; but it is not identical, and I cannot speak for the advocates of open
source.)

The Microsoft license also requires inclusion of a specific statement. That
requirement would not in itself prevent the program from being free: it is nor-
mal for free software to carry license notices that cannot be changed, and this
statement could be included in one of them. The statement is biased and con-
fusing, since it uses the term “intellectual property”; fortunately, one is not
required to endorse the statement as true or even meaningful, only to include it.
The software developer could cancel its misleading effect with a disclaimer like
this: “The following misleading statement has been imposed on us by Microsoft;
please be advised that it is propaganda. See http://gnu.org/philosophy/

not-ipr.html for more explanation.”
However, the requirement to include a fixed piece of text is actually quite

cunning, because anyone who does so has explicitly accepted and applied the
restrictions of the Microsoft patent license. The resulting program is clearly not
free software.

Some free software licenses, such as the most popular GNU General Public
License (GNU GPL), forbid publication of a modified version if it isn’t free
software in the same way. (We call that the “liberty or death” clause, since it
ensures the program will remain free or die.) To apply Microsoft’s license to a
program under the GNU GPL would violate the program’s license; it would be
illegal. Many other free software licenses permit nonfree modified versions. It
wouldn’t be illegal to modify such a program and publish the modified version
under Microsoft’s patent license. But that modified version, with its modified
license, wouldn’t be free software.

Microsoft’s patent covering the new Word format is a US patent. It doesn’t
restrict anyone in Europe; Europeans are free to make and use software that
can read this format. Europeans that develop or use software currently enjoy
an advantage over Americans: Americans can be sued for patent infringement
for their software activities in the US, but the Europeans cannot be sued for
their activities in Europe. Europeans can already get US software patents and
sue Americans, but Americans cannot get European software patents if Europe
doesn’t allow them.

All that will change if the European Parliament authorizes software patents.
Microsoft will be one of thousands of foreign software patent holders that will

http://gnu.org/philosophy/not-ipr.html
http://gnu.org/philosophy/not-ipr.html

Chapter 26: Microsoft’s New Monopoly 161

bring their patents over to Europe to sue the software developers and computer
users there. Of the 50,000-odd putatively invalid software patents issued by
the European Patent Office, around 80 percent do not belong to Europeans.
The European Parliament should vote to keep these patents invalid, and keep
Europeans safe.

2009 Note

The EU directive to allow software patents was rejected, but the European
Patent Office has continued issuing them and some countries treat them as valid.
See http://ffii.org for more information and to participate in the campaign
against software patents in Europe.

http://ffii.org

Part V:

The Licenses

Chapter 27: Introduction to the Licenses 165

27 Introduction to the Licenses

Written by Brett Smith and Richard Stallman.

This part contains the text of the latest versions of the primary GNU licenses:
the GNU General Public License (GNU GPL), the GNU Lesser General Public
License (LGPL), and the GNU Free Documentation License (FDL). Though
they are legal documents, they belong in this book of essays because they are
concrete expressions of the ideals of free software.

Software development for the GNU operating system began in 1984. Once
Richard Stallman had parts of the GNU system that were worth releasing, he
needed a license to release them under. Some free software licenses already
existed; these gave users permission to modify and redistribute the software,
but they also allowed using the code in proprietary versions and proprietary
programs. Using those licenses, GNU would have failed to achieve its goal of
delivering freedom to all users, because middlemen would have converted the
GNU code into proprietary software.

So Stallman devised a license to assure every user the freedom to modify and
redistribute the software. It granted these permissions under one key condition:
whoever distributed the software must pass along the authorization to modify
and redistribute that same software, along with the source code making it prac-
tical to do so. Stallman coined the term “copyleft” (see “What Is Copyleft?” on
p. 127) to describe this key twist of using the legal power of copyright to ensure
freedom for all users.

GNU copyleft licenses were first developed for software, and later for related
areas such as software documentation. In them, the principles of the free software
movement, explained throughout the essays in this book, take practical form.
Each of their successive revisions has had to wrestle with free software’s legal
and practical obstacles and offers numerous illustrations of how free software
ideals are codified into legal terms.

The Origins of the GPL

The first version of the GNU General Public License was published in 1989—but
Stallman had been releasing software under copyleft licenses as part of the GNU
Project since as early as 1985. Prior to 1989, each published GNU program
had been covered by a license specifically tailored for it. Instead of a single
GNU General Public License, there was a GNU CC General Public License, a
GDB General Public License, and so on. These licenses were identical except for
minor differences: for instance, terms about displaying license notices to users
were different for different programs and, unless it covered a program that was

Copyright c© 2010 Free Software Foundation, Inc.
This essay is published in Free Software, Free Society: Selected Essays of Richard

M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

166 Free Software, Free Society, 2nd ed.

just one source file, each license contained the name of the program it applied
to.

By 1989, Stallman had had enough experience with different GNU packages
under slightly different licenses to conclude that it was crucial to unify them into
one license that would cover all these packages. He worked with Jerry Cohen,
an attorney at Perkins Smith & Cohen LLP, to collect concepts from all the
different licenses written up to that point, and bring them together into one
license. It was thus that on 1 February 1989 the GNU General Public License
was born.

The first version of the license sought to ensure two results: first, that all
derived works of the software would be released under the same license and,
second, that everyone who received the software would have a chance to get the
source code. These requirements implement a strong copyleft by blocking the
three main ways of making programs proprietary: with copyright, with end user
license agreements, and by not distributing source code.

In comparison to the program-specific licenses that had preceded it, GPL
version 1 featured few substantial changes—the GPL was evolutionary, not
revolutionary—but it made a big practical difference. Previously, developers
who had wanted to copyleft a program had needed to tailor one of the existing
licenses to that program. Many had not bothered. With the release of the GPL,
those developers had a license they could use out of the box to provide all of
their users with freedom to share and change the software. It was a powerful
tool.

Version 2

After the 1981 US Supreme Court decision in Diamond v. Diehr, the US Patent
and Trademark Office began issuing patents for software. Software patents
threaten free software and proprietary software alike (see part IV in this book),
and Stallman realized that they could subvert the copyleft in the GNU GPL.

By selectively issuing patent licenses, patent holders can arbitrarily control
how the software under them is distributed or modified. A patent holder can
give one party permission to resell the program, another permission to develop
and use a modified version at her company, and a third permission to do all the
activities that the GPL itself allows. They can demand whatever they wish in
exchange for these permissions. They have this power over any software that
implements the patented idea, whether or not they have modified or distributed
it themselves. This power threatens free software because third parties with
patents can impose restrictions on free software users and developers.

If patent holders don’t distribute or modify software, then a software license
based on copyright like the GPL can’t control their activities: they haven’t done
anything that requires permission under the license. But the software license
can stop each of the program’s distributors from entering limiting agreements
with the patent holder. Enter GPL version 2: a new section in the license
(sec. 7) explicitly says that if parties are subject to other legal agreements—
such as a patent license—that contradict the GPL’s terms, then the licensee

Chapter 27: Introduction to the Licenses 167

must refrain from distributing the software at all. As a result, any party that
wants to distribute or modify the software, and also obtain a patent license,
must ensure that the terms of that license are consistent with all of the GPL’s
conditions: recipients of the software must receive it under the same terms, with
no additional restrictions, and have the means to get the source code.

This new section protected the integrity of the distribution system for GPL-
covered software. A fundamental principle of the license is that every licensee,
from the most humble individual to the largest corporation, has the exact same
rights to share and change the software. Patent holders who do not distribute
the software themselves and selectively issues patent licenses could potentially
interfere with this goal, splitting licensees into different groups however they see
fit. Section 7 of GPL version 2 prevents this abuse.

The LGPL

The GPL worked well for the programming tools, utilities, and games that were
released by the GNU Project in the early years; however, Stallman recognized
that releasing the recently developed GNU C Library the same way could back-
fire. Aside from some extensions, the GNU C Library was to be a compatible
replacement for the UNIX C Library, so any C program would be able link with
either one. If proprietary C programs were not allowed to use the GNU C Li-
brary, they would simply use the UNIX library. Being strict in this case would
gain nothing.

Stallman decided to compromise with a modified copyleft: one that would
protect the freedom of the library itself, but not that of the programs that use
it. This idea was implemented in a license originally called the GNU Library
General Public License, first published as version 2.0, in June 1991. The orig-
inal LGPL stated Conditions like the GPL’s—with an important exception: if
someone else’s program used the library only by referring to it as a library, that
program’s source could be distributed under license terms of the author’s choos-
ing. However, the executable made by combining the program and the library
had to come with a copy of the LGPL and source code for the library, and
provide some mechanism for users who have modified the library to update the
executable to use their modified library.

How does a developer use the work as a library in order to take advantage of
the special set of conditions provided by LGPLv2? Think of a computer program
as a series of instructions for doing a particular job: compiling or linking the
program with a library provides the programmer with a means to say, “When
the program gets to this point, get further instructions from the library, and
come back here when those are done.” Libraries are commonly used in software
development because they make the effort less repetitive and less error prone:
programmers don’t have to reinvent the wheel—and perhaps introduce bugs in
the process—every time they want to accomplish a particular task. Because
libraries are so widely created and used, developers have the means to readily
take advantage of the LGPL’s additional permissions.

Version 2.0 of the license worked as intended: in some situations, proprietary

168 Free Software, Free Society, 2nd ed.

software developers chose to use an LGPL-covered library over a proprietary
alternative, and users received the freedom to share and change that library.
This did not produce an “ideal” outcome—where the user had complete control
over the entire program—but in these cases the GPL would not have achieved
that ideal outcome either. The LGPL assured the users some freedom where
they would have otherwise had none.

The name “Library GPL” led some free software developers to assume all
libraries ought on principle to be licensed this way, but that was not the intent—
when a free library has no proprietary competitor, releasing it under the GNU
GPL can benefit free software. To avoid this unintended message, Stallman
renamed this license to the Lesser General Public License, and incremented
the version number to 2.1 to reflect the relatively minor changes in the text:
the license sported a new preamble, a few wording clarifications, and allowed
programs to make their calls to the library through special system facilities for
shared libraries where those are available. The Lesser General Public License
version 2.1 was released in February 1999.

The FDL

At the turn of the century, free software was growing much faster than it had
been previously; the documentation, however, was not keeping pace. Stallman
was concerned about this failure and wrote about it in “Free Software Needs
Free Documentation” (p. 61).

While there are some similarities between software and documentation—they
are both works that are meant for practical use—there are important differences
in the ways they can be used. The GPL and the LGPL were not suitable for
manuals.

For some time, GNU packages had been using an untitled, simple, ad hoc
copyleft license for each manual. Since each manual’s license was different, text
could not be copied from one manual to another. So Stallman wrote the GNU
Free Documentation License, a copyleft license designed primarily for software
documentation and other practical written works.

The FDL was first published in March 2000. The principles of the copyleft
remain the same: everyone who receives a copy of the work should be able to
modify and redistribute it. Where the FDL differs from the software licenses is
in the details of its implementation: conditions about how to attribute the work
and provide “source code”—an editable version of the document—are different.

Version 3

During the 1990s, as free software became more popular, the GPL emerged
as the clear copyleft license of choice for the community, and was adopted by
the majority of free software projects; at the same time, however, proprietary
developers had come up with methods of effectively denying users the freedoms
that the GPL was meant to protect, without actually violating the GPL. In
addition, there were other practices that the GPL did not handle conveniently.
To deal with these issues called for an updated version of the license.

Chapter 27: Introduction to the Licenses 169

Around 2002, Stallman and others at the Free Software Foundation began
discussing how to update the GPL, and the LGPL along with it. The FSF es-
tablished a public review process, run with help from attorneys at the Software
Freedom Law Center, to catch possible problems before actually releasing the
new licenses. Committees of advisors from the community studied issues raised
by public comments and reported the various positions and arguments to Stall-
man, who decided what policy to adopt; then he wrote license text with advice
and suggestions from the attorneys. The importance of the changes made are
explained in “Why Upgrade to GPLv3” (p. 185).

Version 3 used new terminology to promote uniform interpretations in dif-
ferent jurisdictions, and modified some requirements to fit new practices in the
free software community. Beyond that, it introduced several new conditions to
strengthen the copyleft and thereby the free software community as a whole.
For instance, it

• blocked distributors from restricting users by building hardware that rejects
the users’ modified versions (“tivoization”);

• allowed code to carry limited additional requirements, for compatibility
with some other popular free software licenses;

• and strengthened patent requirements by providing clear terms to han-
dle patent cross-licenses, which are common arrangements between large
patent-holding companies.

Both GPLv3 and LGPLv3 included terms to address all of these issues, and
were finally released on 29 June 2007. These licenses are the state of the art in
copyleft, going farther than any other software license to protect users’ freedom
and bring about a world in harmony with the ideals expressed in this book.

Chapter 28: The GNU General Public License 171

28 The GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/
51 Franklin St., Floor 5, Boston, MA 02110-1335, USA

Everyone is permitted to copy and distribute verbatim copies of this li-
cense document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other
kinds of works.

The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, the GNU Gen-
eral Public License is intended to guarantee your freedom to share and change
all versions of a program—to make sure it remains free software for all its users.
We, the Free Software Foundation, use the GNU General Public License for
most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain respon-
sibilities if you distribute copies of the software, or if you modify it: responsibil-
ities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must pass on to the recipients the same freedoms that you received.
You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that
there is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified ver-
sions of the software inside them, although the manufacturer can do so. This is
fundamentally incompatible with the aim of protecting users’ freedom to change

http://fsf.org/

172 Free Software, Free Society, 2nd ed.

the software. The systematic pattern of such abuse occurs in the area of prod-
ucts for individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand
ready to extend this provision to those domains in future versions of the GPL,
as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program
non-free.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License.
Each licensee is addressed as “you”. “Licensees” and “recipients” may be
individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the earlier
work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without permis-
sion, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying a
private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other
activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through a
computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties

Chapter 28: The GNU General Public License 173

are provided), that licensees may convey the work under this License, and
how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets
this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that either is an official standard
defined by a recognized standards body, or, in the case of interfaces specified
for a particular programming language, one that is widely used among
developers working in that language.

The “System Libraries” of an executable work include anything, other than
the work as a whole, that (a) is included in the normal form of packaging
a Major Component, but which is not part of that Major Component, and
(b) serves only to enable use of the work with that Major Component, or
to implement a Standard Interface for which an implementation is available
to the public in source code form. A “Major Component”, in this context,
means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs,
or a compiler used to produce the work, or an object code interpreter used
to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files
associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regen-
erate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are
met. This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered

174 Free Software, Free Society, 2nd ed.

work. This License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not con-
vey, without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this
License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so ex-
clusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside
their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice; keep intact all notices
stating that this License and any non-permissive terms added in accord
with section 7 apply to the code; keep intact all notices of the absence of
any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and
you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the terms
of section 4, provided that you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it,
and giving a relevant date.

Chapter 28: The GNU General Public License 175

b. The work must carry prominent notices stating that it is released un-
der this License and any conditions added under section 7. This re-
quirement modifies the requirement in section 4 to “keep intact all
notices”.

c. You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will there-
fore apply, along with any applicable section 7 additional terms, to the
whole of the work, and all its parts, regardless of how they are pack-
aged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately
received it.

d. If the work has interactive user interfaces, each must display Appropri-
ate Legal Notices; however, if the Program has interactive interfaces
that do not display Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work, and
which are not combined with it such as to form a larger program, in or on
a volume of a storage or distribution medium, is called an “aggregate” if
the compilation and its resulting copyright are not used to limit the access
or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this
License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable Cor-
responding Source under the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by the Corre-
sponding Source fixed on a durable physical medium customarily used
for software interchange.

b. Convey the object code in, or embodied in, a physical product (includ-
ing a physical distribution medium), accompanied by a written offer,
valid for at least three years and valid for as long as you offer spare
parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source
for all the software in the product that is covered by this License, on
a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically perform-
ing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

176 Free Software, Free Society, 2nd ed.

c. Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is allowed
only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Correspond-
ing Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a dif-
ferent server (operated by you or a third party) that supports equiva-
lent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e. Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source
of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from
the Corresponding Source as a System Library, need not be included in
conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation into
a dwelling. In determining whether a product is a consumer product, doubt-
ful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or com-
mon use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product re-
gardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of
use of the product.

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install and
execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice
to ensure that the continued functioning of the modified object code is in
no case prevented or interfered with solely because modification has been
made.

If you convey an object code work under this section in, or with, or specif-
ically for use in, a User Product, and the conveying occurs as part of a

Chapter 28: The GNU General Public License 177

transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed
under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party re-
tains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a re-
quirement to continue to provide support service, warranty, or updates for
a work that has been modified or installed by the recipient, or for the User
Product in which it has been modified or installed. Access to a network
may be denied when the modification itself materially and adversely af-
fects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form),
and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this Li-
cense by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are valid
under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but
the entire Program remains governed by this License without regard to the
additional permissions.

When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Addi-
tional permissions may be written to require their own removal in certain
cases when you modify the work.) You may place additional permissions
on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices dis-
played by works containing it; or

178 Free Software, Free Society, 2nd ed.

c. Prohibiting misrepresentation of the origin of that material, or requir-
ing that modified versions of such material be marked in reasonable
ways as different from the original version; or

d. Limiting the use for publicity purposes of names of licensors or authors
of the material; or

e. Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

f. Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability
that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further restric-
tions” within the meaning of section 10. If the Program as you received it,
or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term.
If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form
of a separately written license, or stated as exceptions; the above require-
ments apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly pro-
vided under this License. Any attempt otherwise to propagate or modify
it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section
11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some rea-
sonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Chapter 28: The GNU General Public License 179

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License.
If your rights have been terminated and not permanently reinstated, you
do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy
of the Program. Ancillary propagation of a covered work occurring solely as
a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of
this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance
by third parties with this License.

An “entity transaction” is a transaction transferring control of an organi-
zation, or substantially all assets of one, or subdividing an organization, or
merging organizations. If propagation of a covered work results from an
entity transaction, each party to that transaction who receives a copy of
the work also receives whatever licenses to the work the party’s predecessor
in interest had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the predecessor
in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under
this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any
portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License
of the Program or a work on which the Program is based. The work thus
licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or con-
trolled by the contributor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permitted by this License, of
making, using, or selling its contributor version, but do not include claims
that would be infringed only as a consequence of further modification of

180 Free Software, Free Society, 2nd ed.

the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the re-
quirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the contents
of its contributor version.

In the following three paragraphs, a “patent license” is any express agree-
ment or commitment, however denominated, not to enforce a patent (such
as an express permission to practice a patent or covenant not to sue for
patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against
the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free
of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular work, or (3)
arrange, in a manner consistent with the requirements of this License, to
extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your
conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents
in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope
of its coverage, prohibits the exercise of, or is conditioned on the non-
exercise of one or more of the rights that are specifically granted under
this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with copies of
the covered work conveyed by you (or copies made from those copies), or
(b) primarily for and in connection with specific products or compilations
that contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Chapter 28: The GNU General Public License 181

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise be
available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot convey a covered work
so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it
at all. For example, if you agree to terms that obligate you to collect a
royalty for further conveying from those to whom you convey the Program,
the only way you could satisfy both those terms and this License would be
to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission
to link or combine any covered work with a work licensed under version 3 of
the GNU Affero General Public License into a single combined work, and
to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies that a certain numbered version of the GNU General Public License
“or any later version” applies to it, you have the option of following the
terms and conditions either of that numbered version or of any later version
published by the Free Software Foundation. If the Program does not spec-
ify a version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU General Public License can be used, that proxy’s public statement of
acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright
holder as a result of your choosing to follow a later version.

182 Free Software, Free Society, 2nd ed.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above can-
not be given local legal effect according to their terms, reviewing courts
shall apply local law that most closely approximates an absolute waiver
of all civil liability in connection with the Program, unless a warranty or
assumption of liability accompanies a copy of the Program in return for a
fee.

END OF TERMS AND CONDITIONS

Chapter 28: The GNU General Public License 183

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively state the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like

this when it starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY;

for details type ‘show w’. This is free software,

and you are welcome to redistribute it under

certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropri-
ate parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine li-
brary, you may consider it more useful to permit linking proprietary appli-
cations with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Chapter 29: Why Upgrade to GPLv3 185

29 Why Upgrade to GPLv3

Version 3 of the GNU General Public License (GNU GPL) has been released,
enabling free software packages to upgrade from GPL version 2. This article
explains why upgrading the license is important.

First of all, it is important to note that upgrading is a choice. GPL version
2 will remain a valid license, and no disaster will happen if some programs
remain under GPLv2 while others advance to GPLv3. These two licenses are
incompatible, but that isn’t a fundamental problem.

When we say that GPLv2 and GPLv3 are incompatible, it means there
is no legal way to combine code under GPLv2 with code under GPLv3 in a
single program. This is because both GPLv2 and GPLv3 are copyleft licenses:
each of them says, “If you include code under this license in a larger program,
the larger program must be under this license too.” There is no way to make
them compatible. We could add a GPLv2-compatibility clause to GPLv3, but
it wouldn’t do the job, because GPLv2 would need a similar clause.

Fortunately, license incompatibility matters only when you want to link,
merge or combine code from two different programs into a single program. There
is no problem in having GPLv3-covered and GPLv2-covered programs side by
side in an operating system. For instance, the TEX license and the Apache license
are incompatible with GPLv2, but that doesn’t stop us from running TEX and
Apache in the same system with Linux, Bash and GCC. This is because they
are all separate programs. Likewise, if Bash and GCC move to GPLv3, while
Linux remains under GPLv2, there is no conflict.

Keeping a program under GPLv2 won’t create problems. The reason to
migrate is because of the existing problems that GPLv3 will address.

One major danger that GPLv3 will block is tivoization. Tivoization means
certain “appliances” (which have computers inside) contain GPL-covered soft-
ware that you can’t effectively change, because the appliance shuts down if it
detects modified software. The usual motive for tivoization is that the software
has features the manufacturer knows people will want to change, and aims to
stop people from changing them. The manufacturers of these computers take
advantage of the freedom that free software provides, but they don’t let you do
likewise.

Some argue that competition between appliances in a free market should
suffice to keep nasty features to a low level. Perhaps competition alone would
avoid arbitrary, pointless misfeatures like “Must shut down between 1pm and
5pm every Tuesday,” but even so, a choice of masters isn’t freedom. Freedom

Copyright c© 2007, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 2007. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

186 Free Software, Free Society, 2nd ed.

means you control what your software does, not merely that you can beg or
threaten someone else who decides for you.

In the crucial area of Digital Restrictions Management (DRM)—nasty fea-
tures designed to restrict your use of the data in your computer—competition
is no help, because relevant competition is forbidden. Under the Digital Millen-
nium Copyright Act and similar laws, it is illegal, in the US and many other
countries, to distribute DVD players unless they restrict the user according to the
official rules of the DVD conspiracy (its web site is http://www.dvdcca.org/,
but the rules do not seem to be published there). The public can’t reject DRM
by buying non-DRM players because none are available. No matter how many
products you can choose from, they all have equivalent digital handcuffs.

GPLv3 ensures you are free to remove the handcuffs. It doesn’t forbid DRM,
or any kind of feature. It places no limits on the substantive functionality you
can add to a program, or remove from it. Rather, it makes sure that you are just
as free to remove nasty features as the distributor of your copy was to add them.
Tivoization is the way they deny you that freedom; to protect your freedom,
GPLv3 forbids tivoization.

The ban on tivoization applies to any product whose use by consumers is to
be expected, even occasionally. GPLv3 tolerates tivoization only for products
that are almost exclusively meant for businesses and organizations.

Another threat that GPLv3 resists is that of patent deals like the Novell-
Microsoft pact. Microsoft wants to use its thousands of patents to make users
pay Microsoft for the privilege of running GNU/Linux, and made this pact to
try to achieve that. The deal offers rather limited protection from Microsoft
patents to Novell’s customers.

Microsoft made a few mistakes in the Novell-Microsoft deal, and GPLv3 is
designed to turn them against Microsoft, extending that limited patent protec-
tion to the whole community. In order to take advantage of this protection,
programs need to use GPLv3.

Microsoft’s lawyers are not stupid, and next time they may manage to avoid
those mistakes. GPLv3 therefore says they don’t get a “next time.” Releasing
a program under GPL version 3 protects it from Microsoft’s future attempts to
make redistributors collect Microsoft royalties from the program’s users.

GPLv3 also provides users with explicit patent protection from the program’s
contributors and redistributors. With GPLv2, users rely on an implicit patent
license to make sure that the company which provided them a copy won’t sue
them, or the people they redistribute copies to, for patent infringement.

The explicit patent license in GPLv3 does not go as far as we might have liked.
Ideally, we would make everyone who redistributes GPL-covered code give up all
software patents, along with everyone who does not redistribute GPL-covered
code, because there should be no software patents. Software patents are a vicious
and absurd system that puts all software developers in danger of being sued by
companies they have never heard of, as well as by all the megacorporations in the
field. Large programs typically combine thousands of ideas, so it is no surprise if
they implement ideas covered by hundreds of patents. Megacorporations collect

http://www.dvdcca.org/

Chapter 29: Why Upgrade to GPLv3 187

thousands of patents, and use those patents to bully smaller developers. Patents
already obstruct free software development.

The only way to make software development safe is to abolish software
patents, and we aim to achieve this some day. But we cannot do this through a
software license. Any program, free or not, can be killed by a software patent in
the hands of an unrelated party, and the program’s license cannot prevent that.
Only court decisions or changes in patent law can make software development
safe from patents. If we tried to do this with GPLv3, it would fail.

Therefore, GPLv3 seeks to limit and channel the danger. In particular, we
have tried to save free software from a fate worse than death: to be made
effectively proprietary, through patents. The explicit patent license of GPLv3
makes sure companies that use the GPL to give users the four freedoms cannot
turn around and use their patents to tell some users, “That doesn’t include you.”
It also stops them from colluding with other patent holders to do this.

Further advantages of GPLv3 include better internationalization, gentler ter-
mination, support for BitTorrent, and compatibility with the Apache license. All
in all, plenty of reason to upgrade.

Change is unlikely to cease once GPLv3 is released. If new threats to users’
freedom develop, we will have to develop GPL version 4. It is important to make
sure that programs will have no trouble upgrading to GPLv4 if and when we
write one.

One way to do this is to release a program under “GPL version 3 or any
later version.” Another way is for all the contributors to a program to state a
proxy who can decide on upgrading to future GPL versions. The third way is
for all the contributors to assign copyright to one designated copyright holder,
who will be in a position to upgrade the license version. One way or another,
programs should provide this flexibility for future GPL versions.

Chapter 30: The GNU Lesser General Public License 189

30 The GNU Lesser General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the
terms and conditions of version 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General
Public License, and the “GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by this License, other than
an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by
the Library, but which is not otherwise based on the Library. Defining a
subclass of a class defined by the Library is deemed a mode of using an
interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Appli-
cation with the Library. The particular version of the Library with which
the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are based
on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility
refers to a function or data to be supplied by an Application that uses the
facility (other than as an argument passed when the facility is invoked),
then you may convey a copy of the modified version:

http://fsf.org/

190 Free Software, Free Society, 2nd ed.

a. under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the function
or data, the facility still operates, and performs whatever part of its
purpose remains meaningful, or

b. under the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a
header file that is part of the Library. You may convey such object code
under terms of your choice, provided that, if the incorporated material is not
limited to numerical parameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten or fewer lines in length),
you do both of the following:

a. Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are covered by
this License.

b. Accompany the object code with a copy of the GNU GPL and this
license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken
together, effectively do not restrict modification of the portions of the Li-
brary contained in the Combined Work and reverse engineering for debug-
ging such modifications, if you also do each of the following:

a. Give prominent notice with each copy of the Combined Work that the
Library is used in it and that the Library and its use are covered by
this License.

b. Accompany the Combined Work with a copy of the GNU GPL and
this license document.

c. For a Combined Work that displays copyright notices during execu-
tion, include the copyright notice for the Library among these notices,
as well as a reference directing the user to the copies of the GNU GPL
and this license document.

d. Do one of the following:

0. Convey the Minimal Corresponding Source under the terms of
this License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to recombine
or relink the Application with a modified version of the Linked
Version to produce a modified Combined Work, in the manner
specified by section 6 of the GNU GPL for conveying Correspond-
ing Source.

Chapter 30: The GNU Lesser General Public License 191

1. Use a suitable shared library mechanism for linking with the Li-
brary. A suitable mechanism is one that (a) uses at run time a
copy of the Library already present on the user’s computer sys-
tem, and (b) will operate properly with a modified version of the
Library that is interface-compatible with the Linked Version.

e. Provide Installation Information, but only if you would otherwise be
required to provide such information under section 6 of the GNU GPL,
and only to the extent that such information is necessary to install
and execute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the
Linked Version. (If you use option 4d0, the Installation Information
must accompany the Minimal Corresponding Source and Correspond-
ing Application Code. If you use option 4d1, you must provide the
Installation Information in the manner specified by section 6 of the
GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side
by side in a single library together with other library facilities that are
not Applications and are not covered by this License, and convey such a
combined library under terms of your choice, if you do both of the following:

a. Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities, conveyed
under the terms of this License.

b. Give prominent notice with the combined library that part of it is a
work based on the Library, and explaining where to find the accom-
panying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as
you received it specifies that a certain numbered version of the GNU Lesser
General Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that published ver-
sion or of any later version published by the Free Software Foundation. If
the Library as you received it does not specify a version number of the
GNU Lesser General Public License, you may choose any version of the
GNU Lesser General Public License ever published by the Free Software
Foundation.

If the Library as you received it specifies that a proxy can decide whether
future versions of the GNU Lesser General Public License shall apply, that
proxy’s public statement of acceptance of any version is permanent autho-
rization for you to choose that version for the Library.

Chapter 31: GNU Free Documentation License 193

31 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document free in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modify-
ing it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a

http://fsf.org/

194 Free Software, Free Society, 2nd ed.

Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text

Chapter 31: GNU Free Documentation License 195

that translates XYZ in another language. (Here XYZ stands for a spe-
cific section name mentioned below, such as “Acknowledgements”, “Dedi-
cations”, “Endorsements”, or “History”.) To “Preserve the Title” of such
a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Dis-
claimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the

196 Free Software, Free Society, 2nd ed.

latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

Chapter 31: GNU Free Documentation License 197

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

198 Free Software, Free Society, 2nd ed.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sec-
tions Entitled “Dedications”. You must delete all sections Entitled “En-
dorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or dis-
tribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

Chapter 31: GNU Free Documentation License 199

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing In-
variant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invari-
ant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also in-
clude the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the trans-
lation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some rea-
sonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt
of a copy of some or all of the same material does not give you any rights
to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms

http://www.gnu.org/copyleft/

200 Free Software, Free Society, 2nd ed.

and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy’s public statement of acceptance
of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multi-
author Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit cor-
poration with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other
than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

Chapter 31: GNU Free Documentation License 201

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or

any later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

Part VI:

Traps and Challenges

Chapter 32: Can You Trust Your Computer? 205

32 Can You Trust Your Computer?

Who should your computer take its orders from? Most people think their
computers should obey them, not obey someone else. With a plan they call
“trusted computing,” large media corporations (including the movie companies
and record companies), together with computer companies such as Microsoft
and Intel, are planning to make your computer obey them instead of you. (Mi-
crosoft’s version of this scheme is called Palladium.) Proprietary programs have
included malicious features before, but this plan would make it universal.

Proprietary software means, fundamentally, that you don’t control what it
does; you can’t study the source code, or change it. It’s not surprising that
clever businessmen find ways to use their control to put you at a disadvantage.
Microsoft has done this several times: one version of Windows was designed
to report to Microsoft all the software on your hard disk; a recent “security”
upgrade in Windows Media Player required users to agree to new restrictions.
But Microsoft is not alone: the KaZaA music-sharing software is designed so
that KaZaA’s business partner can rent out the use of your computer to its
clients. These malicious features are often secret, but even once you know about
them it is hard to remove them, since you don’t have the source code.

In the past, these were isolated incidents. “Trusted computing” would make
the practice pervasive. “Treacherous computing” is a more appropriate name,
because the plan is designed to make sure your computer will systematically
disobey you. In fact, it is designed to stop your computer from functioning as a
general-purpose computer. Every operation may require explicit permission.

The technical idea underlying treacherous computing is that the computer
includes a digital encryption and signature device, and the keys are kept secret
from you. Proprietary programs will use this device to control which other pro-
grams you can run, which documents or data you can access, and what programs
you can pass them to. These programs will continually download new authoriza-
tion rules through the Internet, and impose those rules automatically on your
work. If you don’t allow your computer to obtain the new rules periodically
from the Internet, some capabilities will automatically cease to function.

Of course, Hollywood and the record companies plan to use treacherous com-
puting for Digital Restrictions Management (DRM), so that downloaded videos
and music can be played only on one specified computer. Sharing will be entirely
impossible, at least using the authorized files that you would get from those com-
panies. You, the public, ought to have both the freedom and the ability to share
these things. (I expect that someone will find a way to produce unencrypted

Copyright c© 2002, 2007 Richard Stallman
This essay was first published on http://gnu.org, in 2002. This version is part

of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

206 Free Software, Free Society, 2nd ed.

versions, and to upload and share them, so DRM will not entirely succeed, but
that is no excuse for the system.)

Making sharing impossible is bad enough, but it gets worse. There are plans
to use the same facility for email and documents—resulting in email that dis-
appears in two weeks, or documents that can only be read on the computers in
one company.

Imagine if you get an email from your boss telling you to do something that
you think is risky; a month later, when it backfires, you can’t use the email to
show that the decision was not yours. “Getting it in writing” doesn’t protect
you when the order is written in disappearing ink.

Imagine if you get an email from your boss stating a policy that is illegal
or morally outrageous, such as to shred your company’s audit documents, or to
allow a dangerous threat to your country to move forward unchecked. Today you
can send this to a reporter and expose the activity. With treacherous computing,
the reporter won’t be able to read the document; her computer will refuse to
obey her. Treacherous computing becomes a paradise for corruption.

Word processors such as Microsoft Word could use treacherous computing
when they save your documents, to make sure no competing word processors can
read them. Today we must figure out the secrets of Word format by laborious
experiments in order to make free word processors read Word documents. If
Word encrypts documents using treacherous computing when saving them, the
free software community won’t have a chance of developing software to read
them—and if we could, such programs might even be forbidden by the Digital
Millennium Copyright Act.

Programs that use treacherous computing will continually download new
authorization rules through the Internet, and impose those rules automatically
on your work. If Microsoft, or the US government, does not like what you said
in a document you wrote, they could post new instructions telling all computers
to refuse to let anyone read that document. Each computer would obey when
it downloads the new instructions. Your writing would be subject to 1984-style
retroactive erasure. You might be unable to read it yourself.

You might think you can find out what nasty things a treacherous-computing
application does, study how painful they are, and decide whether to accept them.
Even if you can find this out, it would be foolish to accept the deal, but you
can’t even expect the deal to stand still. Once you come to depend on using
the program, you are hooked and they know it; then they can change the deal.
Some applications will automatically download upgrades that will do something
different—and they won’t give you a choice about whether to upgrade.

Today you can avoid being restricted by proprietary software by not using
it. If you run GNU/Linux or another free operating system, and if you avoid
installing proprietary applications on it, then you are in charge of what your
computer does. If a free program has a malicious feature, other developers in
the community will take it out, and you can use the corrected version. You can
also run free application programs and tools on nonfree operating systems; this
falls short of fully giving you freedom, but many users do it.

Chapter 32: Can You Trust Your Computer? 207

Treacherous computing puts the existence of free operating systems and free
applications at risk, because you may not be able to run them at all. Some
versions of treacherous computing would require the operating system to be
specifically authorized by a particular company. Free operating systems could
not be installed. Some versions of treacherous computing would require every
program to be specifically authorized by the operating system developer. You
could not run free applications on such a system. If you did figure out how, and
told someone, that could be a crime.

There are proposals already for US laws that would require all computers to
support treacherous computing, and to prohibit connecting old computers to the
Internet. The CBDTPA (we call it the Consume But Don’t Try Programming
Act) is one of them. But even if they don’t legally force you to switch to
treacherous computing, the pressure to accept it may be enormous. Today people
often use Word format for communication, although this causes several sorts of
problems (see “We Can Put an End to Word Attachments,” on p. 231). If only
a treacherous-computing machine can read the latest Word documents, many
people will switch to it, if they view the situation only in terms of individual
action (take it or leave it). To oppose treacherous computing, we must join
together and confront the situation as a collective choice.

For further information about treacherous computing, see http://www.cl.

cam.ac.uk/users/rja14/tcpa-faq.html.
To block treacherous computing will require large numbers of citizens to

organize. We need your help! Please support Defective by Design, the FSF’s
campaign against Digital Restrictions Management.

Postscripts

1. The computer security field uses the term “trusted computing” in a different
way—beware of confusion between the two meanings.

2. The GNU Project distributes the GNU Privacy Guard, a program that
implements public-key encryption and digital signatures, which you can
use to send secure and private email. It is useful to explore how GPG
differs from treacherous computing, and see what makes one helpful and
the other so dangerous.

When someone uses GPG to send you an encrypted document, and you
use GPG to decode it, the result is an unencrypted document that you
can read, forward, copy, and even reencrypt to send it securely to someone
else. A treacherous-computing application would let you read the words
on the screen, but would not let you produce an unencrypted document
that you could use in other ways. GPG, a free software package, makes
security features available to the users; they use it. Treacherous computing
is designed to impose restrictions on the users; it uses them.

http://www.cl.cam.ac.uk/users/rja14/tcpa-faq.html
http://www.cl.cam.ac.uk/users/rja14/tcpa-faq.html

208 Free Software, Free Society, 2nd ed.

3. The supporters of treacherous computing focus their discourse on its ben-
eficial uses. What they say is often correct, just not important.

Like most hardware, treacherous-computing hardware can be used for pur-
poses which are not harmful. But these features can be implemented in
other ways, without treacherous-computing hardware. The principal differ-
ence that treacherous computing makes for users is the nasty consequence:
rigging your computer to work against you.

What they say is true, and what I say is true. Put them together and what
do you get? Treacherous computing is a plan to take away our freedom,
while offering minor benefits to distract us from what we would lose.

4. Microsoft presents Palladium as a security measure, and claims that it will
protect against viruses, but this claim is evidently false. A presentation by
Microsoft Research in October 2002 stated that one of the specifications of
Palladium is that existing operating systems and applications will continue
to run; therefore, viruses will continue to be able to do all the things that
they can do today.

When Microsoft employees speak of “security” in connection with Palla-
dium, they do not mean what we normally mean by that word: protecting
your machine from things you do not want. They mean protecting your
copies of data on your machine from access by you in ways others do not
want. A slide in the presentation listed several types of secrets Palladium
could be used to keep, including “third party secrets” and “user secrets”—
but it put “user secrets” in quotation marks, recognizing that this is some-
what of an absurdity in the context of Palladium.

The presentation made frequent use of other terms that we frequently as-
sociate with the context of security, such as “attack,” “malicious code,”
“spoofing,” as well as “trusted.” None of them means what it normally
means. “Attack” doesn’t mean someone trying to hurt you, it means you
trying to copy music. “Malicious code” means code installed by you to do
what someone else doesn’t want your machine to do. “Spoofing” doesn’t
mean someone’s fooling you, it means your fooling Palladium. And so on.

5. A previous statement by the Palladium developers stated the basic premise
that whoever developed or collected information should have total control
of how you use it. This would represent a revolutionary overturn of past
ideas of ethics and of the legal system, and create an unprecedented system
of control. The specific problems of these systems are no accident; they
result from the basic goal. It is the goal we must reject.

Chapter 33: Who Does That Server Really Serve? 209

33 Who Does That Server Really Serve?

Background: How Proprietary Software Takes Away Your Freedom

Digital technology can give you freedom; it can also take your freedom away. The
first threat to our control over our computing came from proprietary software:
software that the users cannot control because the owner (a company such as
Apple or Microsoft) controls it. The owner often takes advantage of this unjust
power by inserting malicious features such as spyware, back doors, and Digital
Restrictions Management (DRM) (referred to as “Digital Rights Management”
in their propaganda).

Our solution to this problem is developing free software and rejecting pro-
prietary software. Free software means that you, as a user, have four essential
freedoms: (0) to run the program as you wish, (1) to study and change the source
code so it does what you wish, (2) to redistribute exact copies, and (3) to redis-
tribute copies of your modified versions. (See “The Free Software Definition,”
on p. 3.)

With free software, we, the users, take back control of our computing. Pro-
prietary software still exists, but we can exclude it from our lives and many of
us have done so. However, we now face a new threat to our control over our
computing: Software as a Service. For our freedom’s sake, we have to reject that
too.

How Software as a Service Takes Away Your Freedom

Software as a Service (SaaS) means that someone sets up a network server that
does certain computing tasks—running spreadsheets, word processing, translat-
ing text into another language, etc.—then invites users to do their computing
on that server. Users send their data to the server, which does their computing
on the data thus provided, then sends the results back or acts on them directly.

These servers wrest control from the users even more inexorably than pro-
prietary software. With proprietary software, users typically get an executable
file but not the source code. That makes it hard for programmers to study the
code that is running, so it’s hard to determine what the program really does,
and hard to change it.

With SaaS, the users do not have even the executable file: it is on the server,
where the users can’t see or touch it. Thus it is impossible for them to ascertain
what it really does, and impossible to change it.

Copyright c© 2010 Richard Stallman
This essay was originally published in the online edition of the Boston Review,

on 8 March 2010, under the title “What Does That Server Really Serve?” This
version is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

210 Free Software, Free Society, 2nd ed.

Furthermore, SaaS automatically leads to harmful consequences equivalent
to the malicious features of certain proprietary software. For instance, some
proprietary programs are “spyware”: the program sends out data about users’
computing activities. Microsoft Windows sends information about users’ activi-
ties to Microsoft. Windows Media Player and RealPlayer report what each user
watches or listens to.

Unlike proprietary software, SaaS does not require covert code to obtain the
user’s data. Instead, users must send their data to the server in order to use it.
This has the same effect as spyware: the server operator gets the data. He gets
it with no special effort, by the nature of SaaS.

Some proprietary programs can mistreat users under remote command. For
instance, Windows has a back door with which Microsoft can forcibly change
any software on the machine. The Amazon Kindle e-book reader (whose name
suggests it’s intended to burn people’s books) has an Orwellian back door that
Amazon used in 2009 to remotely delete Kindle copies of Orwell’s books 1984
and Animal Farm which the users had purchased from Amazon.1

SaaS inherently gives the server operator the power to change the software in
use, or the users’ data being operated on. Once again, no special code is needed
to do this.

Thus, SaaS is equivalent to total spyware and a gaping wide back door, and
gives the server operator unjust power over the user. We can’t accept that.

Untangling the SaaS Issue from the Proprietary Software Issue

SaaS and proprietary software lead to similar harmful results, but the causal
mechanisms are different. With proprietary software, the cause is that you have
and use a copy which is difficult or illegal to change. With SaaS, the cause is
that you use a copy you don’t have.

These two issues are often confused, and not only by accident. Web develop-
ers use the vague term “web application” to lump the server software together
with programs run on your machine in your browser. Some web pages install
nontrivial or even large JavaScript programs temporarily into your browser with-
out informing you. When these JavaScript programs are nonfree, they are as
bad as any other nonfree software. Here, however, we are concerned with the
problem of the server software itself.

Many free software supporters assume that the problem of SaaS will be solved
by developing free software for servers. For the server operator’s sake, the pro-
grams on the server had better be free; if they are proprietary, their owners have
power over the server. That’s unfair to the operator, and doesn’t help you at
all. But if the programs on the server are free, that doesn’t protect you as the
server’s user from the effects of SaaS. They give freedom to the operator, but
not to you.

1 Brad Stone, “Amazon Erases Orwell Books from Kindle,” New York Times,
17 July 2009, sec. B1, http://nytimes.com/2009/07/18/technology/
companies/18amazon.html.

http://nytimes.com/2009/07/18/technology/companies/18amazon.html
http://nytimes.com/2009/07/18/technology/companies/18amazon.html

Chapter 33: Who Does That Server Really Serve? 211

Releasing the server software source code does benefit the community: suit-
ably skilled users can set up similar servers, perhaps changing the software. But
none of these servers would give you control over computing you do on it, unless
it’s your server. The rest would all be SaaS. SaaS always subjects you to the
power of the server operator, and the only remedy is, Don’t use SaaS! Don’t
use someone else’s server to do your own computing on data provided by you.

Distinguishing SaaS from Other Network Services

Does condemning SaaS mean rejecting all network servers? Not at all. Most
servers do not raise this issue, because the job you do with them isn’t your own
computing except in a trivial sense.

The original purpose of web servers wasn’t to do computing for you, it was
to publish information for you to access. Even today this is what most web sites
do, and it doesn’t pose the SaaS problem, because accessing someone’s published
information isn’t a matter of doing your own computing. Neither is publishing
your own materials via a blog site or a microblogging service such as Twitter or
identi.ca. The same goes for communication not meant to be private, such as
chat groups. Social networking can extend into SaaS; however, at root it is just
a method of communication and publication, not SaaS. If you use the service
for minor editing of what you’re going to communicate, that is not a significant
issue.

Services such as search engines collect data from around the web and let you
examine it. Looking through their collection of data isn’t your own computing
in the usual sense—you didn’t provide that collection—so using such a service
to search the web is not SaaS. (However, using someone else’s search engine to
implement a search facility for your own site is SaaS.)

E-commerce is not SaaS, because the computing isn’t solely yours; rather, it
is done jointly for you and another party. So there’s no particular reason why
you alone should expect to control that computing. The real issue in e-commerce
is whether you trust the other party with your money and personal information.

Using a joint project’s servers isn’t SaaS because the computing you do in
this way isn’t yours personally. For instance, if you edit pages on Wikipedia, you
are not doing your own computing; rather, you are collaborating in Wikipedia’s
computing.

Wikipedia controls its own servers, but groups can face the problem of SaaS if
they do their group activities on someone else’s server. Fortunately, development
hosting sites such as Savannah and SourceForge don’t pose the SaaS problem,
because what groups do there is mainly publication and public communication,
rather than their own private computing.

Multiplayer games are a group activity carried out on someone else’s server,
which makes them SaaS. But where the data involved is just the state of play
and the score, the worst wrong the operator might commit is favoritism. You
might well ignore that risk, since it seems unlikely and very little is at stake.
On the other hand, when the game becomes more than just a game, the issue
changes.

212 Free Software, Free Society, 2nd ed.

Which online services are SaaS? Google Docs is a clear example. Its basic
activity is editing, and Google encourages people to use it for their own editing;
this is SaaS. It offers the added feature of collaborative editing, but adding
participants doesn’t alter the fact that editing on the server is SaaS. (In addi-
tion, Google Docs is unacceptable because it installs a large nonfree JavaScript
program into the users’ browsers.) If using a service for communication or col-
laboration requires doing substantial parts of your own computing with it too,
that computing is SaaS even if the communication is not.

Some sites offer multiple services, and if one is not SaaS, another may be
SaaS. For instance, the main service of Facebook is social networking, and that
is not SaaS; however, it supports third-party applications, some of which may
be SaaS. Flickr’s main service is distributing photos, which is not SaaS, but it
also has features for editing photos, which is SaaS.

Some sites whose main service is publication and communication extend it
with “contact management”: keeping track of people you have relationships
with. Sending mail to those people for you is not SaaS, but keeping track of
your dealings with them, if substantial, is SaaS.

If a service is not SaaS, that does not mean it is OK. There are other bad
things a service can do. For instance, Facebook distributes video in Flash, which
pressures users to run nonfree software, and it gives users a misleading impression
of privacy. Those are important issues too, but this article’s concern is the issue
of SaaS.

The IT industry discourages users from considering these distinctions. That’s
what the buzzword “cloud computing” is for. This term is so nebulous that it
could refer to almost any use of the Internet. It includes SaaS and it includes
nearly everything else. The term only lends itself to uselessly broad statements.

The real meaning of “cloud computing” is to suggest a devil-may-care ap-
proach towards your computing. It says, “Don’t ask questions, just trust every
business without hesitation. Don’t worry about who controls your computing
or who holds your data. Don’t check for a hook hidden inside our service before
you swallow it.” In other words, “Think like a sucker.” I prefer to avoid the
term.

Dealing with the SaaS Problem

Only a small fraction of all web sites do SaaS; most don’t raise the issue. But
what should we do about the ones that raise it?

For the simple case, where you are doing your own computing on data in
your own hands, the solution is simple: use your own copy of a free software
application. Do your text editing with your copy of a free text editor such as
GNU Emacs or a free word processor. Do your photo editing with your copy of
free software such as GIMP.

But what about collaborating with other individuals? It may be hard to
do this at present without using a server. If you use one, don’t trust a server
run by a company. A mere contract as a customer is no protection unless you
could detect a breach and could really sue, and the company probably writes

Chapter 33: Who Does That Server Really Serve? 213

its contracts to permit a broad range of abuses. Police can subpoena your data
from the company with less basis than required to subpoena them from you,
supposing the company doesn’t volunteer them like the US phone companies
that illegally wiretapped their customers for Bush. If you must use a server, use
a server whose operators give you a basis for trust beyond a mere commercial
relationship.

However, on a longer time scale, we can create alternatives to using servers.
For instance, we can create a peer-to-peer program through which collaborators
can share data encrypted. The free software community should develop dis-
tributed peer-to-peer replacements for important “web applications.” It may be
wise to release them under GNU Affero GPL, since they are likely candidates for
being converted into server-based programs by someone else. The GNU Project
is looking for volunteers to work on such replacements. We also invite other free
software projects to consider this issue in their design.

In the meantime, if a company invites you to use its server to do your own
computing tasks, don’t yield; don’t use SaaS. Don’t buy or install “thin clients,”
which are simply computers so weak they make you do the real work on a server,
unless you’re going to use them with your server. Use a real computer and keep
your data there. Do your work with your own copy of a free program, for your
freedom’s sake.

Chapter 34: Free but Shackled: The Java Trap 215

34 Free but Shackled: The Java Trap

Since this article was first published, on 12 April 2004, Sun has relicensed
most of its Java platform reference implementation under the GNU General
Public License, and there is now a free development environment for Java.
Thus, the Java language as such is no longer a trap.

You must be careful, however, because not every Java platform is free.
Sun continues distributing an executable Java platform which is nonfree,
and other companies do so too.

The free environment for Java is called IcedTea; the source code Sun
freed is included in that. So that is the one you should use. Many
GNU/Linux distributions come with IcedTea, but some include nonfree Java
platforms.

To reliably ensure your Java programs run fine in a free environment,
you need to develop them using IcedTea. Theoretically the Java platforms
should be compatible, but they are not compatible 100 percent.

In addition, there are nonfree programs with “Java” in their name, such
as JavaFX, and there are nonfree Java packages you might find tempting
but need to reject. So check the licenses of whatever packages you plan to
use. If you use Swing, make sure to use the free version, which comes with
IcedTea.

Aside from those Java specifics, the general issue described here remains
important, because any nonfree library or programming platform can cause
a similar problem. We must learn a lesson from the history of Java, so we
can avoid other traps in the future.

If your program is free software, it is basically ethical—but there is a trap you
must be on guard for. Your program, though in itself free, may be restricted by
nonfree software that it depends on. Since the problem is most prominent today
for Java programs, we call it the Java Trap.

A program is free software if its users have certain crucial freedoms. Roughly
speaking, they are: the freedom to run the program, the freedom to study and
change the source, the freedom to redistribute the source and binaries, and the
freedom to publish improved versions. (See “The Free Software Definition,” on
p. 3.) Whether any given program in source form is free software depends solely
on the meaning of its license.

Whether the program can be used in the Free World, used by people who
mean to live in freedom, is a more complex question. This is not determined
by the program’s own license alone, because no program works in isolation.
Every program depends on other programs. For instance, a program needs to be
compiled or interpreted, so it depends on a compiler or interpreter. If compiled

Copyright c© 2004, 2006, 2010 Richard Stallman
This essay was first published on http://gnu.org, in 2004. This version is part

of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

216 Free Software, Free Society, 2nd ed.

into byte code, it depends on a byte-code interpreter. Moreover, it needs libraries
in order to run, and it may also invoke other separate programs that run in
other processes. All of these programs are dependencies. Dependencies may
be necessary for the program to run at all, or they may be necessary only for
certain features. Either way, all or part of the program cannot operate without
the dependencies.

If some of a program’s dependencies are nonfree, this means that all or part
of the program is unable to run in an entirely free system—it is unusable in
the Free World. Sure, we could redistribute the program and have copies on
our machines, but that’s not much good if it won’t run. That program is free
software, but it is effectively shackled by its nonfree dependencies.

This problem can occur in any kind of software, in any language. For in-
stance, a free program that only runs on Microsoft Windows is clearly useless in
the Free World. But software that runs on GNU/Linux can also be useless if it
depends on other nonfree software. In the past, Motif (before we had LessTif)
and Qt (before its developers made it free software) were major causes of this
problem. Most 3D video cards work fully only with nonfree drivers, which also
cause this problem. But the major source of this problem today is Java, because
people who write free software often feel Java is sexy. Blinded by their attraction
to the language, they overlook the issue of dependencies and fall into the Java
Trap.

Sun’s implementation of Java is nonfree. The standard Java libraries are
nonfree also. We do have free implementations of Java, such as the GNU Com-
piler for Java (GCJ) and GNU Classpath, but they don’t support all the features
yet. We are still catching up.

If you develop a Java program on Sun’s Java platform, you are liable to use
Sun-only features without even noticing. By the time you find this out, you
may have been using them for months, and redoing the work could take more
months. You might say, “It’s too much work to start over.” Then your program
will have fallen into the Java Trap; it will be unusable in the Free World.

The reliable way to avoid the Java Trap is to have only a free implementation
of Java on your system. Then if you use a Java feature or library that free
software does not yet support, you will find out straightaway, and you can rewrite
that code immediately.

Sun continues to develop additional “standard” Java libraries, and nearly all
of them are nonfree; in many cases, even a library’s specification is a trade secret,
and Sun’s latest license for these specifications prohibits release of anything
less than a full implementation of the specification. (See http://jcp.org/

aboutJava/communityprocess/JSPA2.pdf and http://jcp.org/aboutJava/

communityprocess/final/jsr129/j2me_pb-1_0-fr-spec-license.html for
examples.)

Fortunately, that specification license does permit releasing an implementa-
tion as free software; others who receive the library can be allowed to change it
and are not required to adhere to the specification. But the requirement has the
effect of prohibiting the use of a collaborative development model to produce

http://jcp.org/aboutJava/communityprocess/JSPA2.pdf
http://jcp.org/aboutJava/communityprocess/JSPA2.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr129/j2me_pb-1_0-fr-spec-license.html
http://jcp.org/aboutJava/communityprocess/final/jsr129/j2me_pb-1_0-fr-spec-license.html

Chapter 34: Free but Shackled: The Java Trap 217

the free implementation. Use of that model would entail publishing incomplete
versions, something those who have read the spec are not allowed to do.

In the early days of the free software movement, it was impossible to avoid
depending on nonfree programs. Before we had the GNU C compiler, every C
program (free or not) depended on a nonfree C compiler. Before we had the
GNU C library, every program depended on a nonfree C library. Before we
had Linux, the first free kernel, every program depended on a nonfree kernel.
Before we had BASH, every shell script had to be interpreted by a nonfree shell.
It was inevitable that our first programs would initially be hampered by these
dependencies, but we accepted this because our plan included rescuing them
subsequently. Our overall goal, a self-hosting GNU operating system, included
free replacements for all those dependencies; if we reached the goal, all our
programs would be rescued. Thus it happened: with the GNU/Linux system,
we can now run these programs on free platforms.

The situation is different today. We now have powerful free operating systems
and many free programming tools. Whatever job you want to do, you can do
it on a free platform; there is no need to accept a nonfree dependency even
temporarily. The main reason people fall into the trap today is because they are
not thinking about it. The easiest solution to the problem is to teach people to
recognize it and not fall into it.

To keep your Java code safe from the Java Trap, install a free Java develop-
ment environment and use it. More generally, whatever language you use, keep
your eyes open, and check the free status of programs your code depends on.
The easiest way to verify that a program is free is by looking for it in the Free
Software Directory (http://fsf.org/directory). If a program is not in the
directory, you can check its license(s) against the list of free software licenses
(http://gnu.org/licenses/license-list.html).

We are trying to rescue the trapped Java programs, so if you like the Java
language, we invite you to help in developing GNU Classpath. Trying your pro-
grams with the GCJ Compiler and GNU Classpath, and reporting any problems
you encounter in classes already implemented, is also useful. However, finishing
GNU Classpath will take time; if more nonfree libraries continue to be added,
we may never have all the latest ones. So please don’t put your free software in
shackles. When you write an application program today, write it to run on free
facilities from the start.

http://fsf.org/directory
http://gnu.org/licenses/license-list.html

Chapter 35: The JavaScript Trap 219

35 The JavaScript Trap

In the free software community, the idea that nonfree programs mistreat their
users is familiar. Some of us refuse entirely to install proprietary software, and
many others consider nonfreedom a strike against the program. Many users are
aware that this issue applies to the plug-ins that browsers offer to install, since
they can be free or nonfree.

But browsers run other nonfree programs which they don’t ask you about
or even tell you about—programs that web pages contain or link to. These
programs are most often written in JavaScript, though other languages are also
used.

JavaScript (officially called ECMAScript, but few use that name) was once
used for minor frills in web pages, such as cute but inessential navigation and
display features. It was acceptable to consider these as mere extensions of HTML
markup, rather than as true software; they did not constitute a significant issue.

Many sites still use JavaScript that way, but some use it for major programs
that do large jobs. For instance, Google Docs downloads into your machine a
JavaScript program which measures half a megabyte, in a compacted form that
we could call Obfuscript because it has no comments and hardly any whitespace,
and the method names are one letter long. The source code of a program is the
preferred form for modifying it; the compacted code is not source code, and the
real source code of this program is not available to the user.

Browsers don’t normally tell you when they load JavaScript programs. Most
browsers have a way to turn off JavaScript entirely, but none of them can check
for JavaScript programs that are nontrivial and nonfree. Even if you’re aware
of this issue, it would take you considerable trouble to identify and then block
those programs. However, even in the free software community most users are
not aware of this issue; the browsers’ silence tends to conceal it.

It is possible to release a JavaScript program as free software, by distributing
the source code under a free software license. But even if the program’s source
is available, there is no easy way to run your modified version instead of the
original. Current free browsers do not offer a facility to run your own modified
version instead of the one delivered in the page. The effect is comparable to
tivoization, although not quite so hard to overcome.

JavaScript is not the only language web sites use for programs sent to the
user. Flash supports programming through an extended variant of JavaScript.
We will need to study the issue of Flash to make suitable recommendations.

Copyright c© 2009, 2010 Richard Stallman
This essay was first published on http://gnu.org, in 2009. This version is part

of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

This chapter is licensed under the Creative Commons Attribution-NoDerivs 3.0 United
States License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nd/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California 94105, USA.

http://gnu.org
http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/

220 Free Software, Free Society, 2nd ed.

Silverlight seems likely to create a problem similar to Flash, except worse, since
Microsoft uses it as a platform for nonfree codecs. A free replacement for Sil-
verlight does not do the job for the free world unless it normally comes with free
replacement codecs.

Java applets also run in the browser, and raise similar issues. In general,
any sort of applet system poses this sort of problem. Having a free execution
environment for an applet only brings us far enough to encounter the problem.

A strong movement has developed that calls for web sites to communicate
only through formats and protocols that are free (some say “open”); that is to
say, whose documentation is published and which anyone is free to implement.
With the presence of programs in web pages, that criterion is necessary, but
not sufficient. JavaScript itself, as a format, is free, and use of JavaScript in
a web site is not necessarily bad. However, as we’ve seen above, it also isn’t
necessarily OK. When the site transmits a program to the user, it is not enough
for the program to be written in a documented and unencumbered language;
that program must be free, too. “Only free programs transmitted to the user”
must become part of the criterion for proper behavior by web sites.

Silently loading and running nonfree programs is one among several issues
raised by “web applications.” The term “web application” was designed to
disregard the fundamental distinction between software delivered to users and
software running on the server. It can refer to a specialized client program
running in a browser; it can refer to specialized server software; it can refer to
a specialized client program that works hand in hand with specialized server
software. The client and server sides raise different ethical issues, even if they
are so closely integrated that they arguably form parts of a single program. This
article addresses only the issue of the client-side software. We are addressing
the server issue separately.

In practical terms, how can we deal with the problem of nonfree JavaScript
programs in web sites? Here’s a plan of action.

First, we need a practical criterion for nontrivial JavaScript programs. Since
“nontrivial” is a matter of degree, this is a matter of designing a simple criterion
that gives good results, rather than determining the one correct answer.

Our proposal is to consider a JavaScript program nontrivial if it makes an
AJAX request, and consider it nontrivial if it defines methods and either loads
an external script or is loaded as one.

At the end of this article we propose a convention by which a nontrivial
JavaScript program in a web page can state the URL where its source code is
located, and can state its license too, using stylized comments.

Finally, we need to change free browsers to support freedom for users of pages
with JavaScript. First of all, browsers should be able to tell the user about
nontrivial nonfree JavaScript programs, rather than running them. Perhaps
NoScript could be adapted to do this.

Browser users also need a convenient facility to specify JavaScript code to
use instead of the JavaScript in a certain page. (The specified code might be
total replacement, or a modified version of the free JavaScript program in that

Chapter 35: The JavaScript Trap 221

page.) Greasemonkey comes close to being able to do this, but not quite, since it
doesn’t guarantee to modify the JavaScript code in a page before that program
starts to execute. Using a local proxy works, but is too inconvenient now to be
a real solution. We need to construct a solution that is reliable and convenient,
as well as sites for sharing changes. The GNU Project would like to recommend
sites which are dedicated to free changes only.

These features will make it possible for a JavaScript program included in a
web page to be free in a real and practical sense. JavaScript will no longer be a
particular obstacle to our freedom—no more than C and Java are now. We will
be able to reject and even replace the nonfree nontrivial JavaScript programs,
just as we reject and replace nonfree packages that are offered for installation
in the usual way. Our campaign for web sites to free their JavaScript can then
begin.

Thank you to Matt Lee and John Resig for their help in defining our proposed
criterion, and to David Parunakian and Jaffar Rumith for bringing this issue to
my attention.

Appendix: A Convention for Releasing Free JavaScript Programs

For references to corresponding source code, we recommend

// @source:

followed by the URL.
To indicate the license of the JavaScript code embedded in a page, we rec-

ommend putting the license notice between two notes of this form:

@licstart The following is the entire license notice for the

JavaScript code in this page.

...

@licend The above is the entire license notice

for the JavaScript code in this page.

Of course, all of this should be contained in a multiline comment.
The GNU GPL, like many other free software licenses, requires distribution of

a copy of the license with both source and binary forms of the program. However,
the GNU GPL is long enough that including it in a page with a JavaScript
program can be inconvenient. You can remove that requirement, for code that
you have the copyright on, with a license notice like this:

Copyright (C) YYYY Developer

The JavaScript code in this page is free software: you can

redistribute it and/or modify it under the terms of the GNU

General Public License (GNU GPL) as published by the Free Software

Foundation, either version 3 of the License, or (at your option)

222 Free Software, Free Society, 2nd ed.

any later version. The code is distributed WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.

As additional permission under GNU GPL version 3 section 7, you

may distribute non-source (e.g., minimized or compacted) forms of

that code without the copy of the GNU GPL normally required by

section 4, provided you include this license notice and a URL

through which recipients can access the Corresponding Source.

Chapter 36: The X Window System Trap 223

36 The X Window System Trap

To copyleft or not to copyleft? That is one of the major controversies in the
free software community. The idea of copyleft is that we should fight fire with
fire—that we should use copyright to make sure our code stays free. The GNU
General Public License (GNU GPL) is one example of a copyleft license.

Some free software developers prefer noncopyleft distribution. Noncopyleft
licenses such as the XFree86 and BSD licenses are based on the idea of never
saying no to anyone—not even to someone who seeks to use your work as the
basis for restricting other people. Noncopyleft licensing does nothing wrong,
but it misses the opportunity to actively protect our freedom to change and
redistribute software. For that, we need copyleft.

For many years, the X Consortium was the chief opponent of copyleft. It
exerted both moral suasion and pressure to discourage free software developers
from copylefting their programs. It used moral suasion by suggesting that it is
not nice to say no. It used pressure through its rule that copylefted software
could not be in the X Distribution.

Why did the X Consortium adopt this policy? It had to do with their concep-
tion of success. The X Consortium defined success as popularity—specifically,
getting computer companies to use the X Window System. This definition put
the computer companies in the driver’s seat: whatever they wanted, the X Con-
sortium had to help them get it.

Computer companies normally distribute proprietary software. They wanted
free software developers to donate their work for such use. If they had asked
for this directly, people would have laughed. But the X Consortium, fronting
for them, could present this request as an unselfish one. “Join us in donating
our work to proprietary software developers,” they said, suggesting that this
is a noble form of self-sacrifice. “Join us in achieving popularity,” they said,
suggesting that it was not even a sacrifice.

But self-sacrifice is not the issue: tossing away the defense that copyleft
provides, which protects the freedom of the whole community, is sacrificing more
than yourself. Those who granted the X Consortium’s request entrusted the
community’s future to the goodwill of the X Consortium.

This trust was misplaced. In its last year, the X Consortium made a plan to
restrict the forthcoming X11R6.4 release so that it would not be free software.
They decided to start saying no, not only to proprietary software developers,
but to our community as well.

Copyright c© 1998, 1999, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 1998. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

224 Free Software, Free Society, 2nd ed.

There is an irony here. If you said yes when the X Consortium asked you not
to use copyleft, you put the X Consortium in a position to license and restrict
its version of your program, along with the code for the core of X.

The X Consortium did not carry out this plan. Instead it closed down and
transferred X development to the Open Group, whose staff are now carrying
out a similar plan. To give them credit, when I asked them to release X11R6.4
under the GNU GPL in parallel with their planned restrictive license, they were
willing to consider the idea. (They were firmly against staying with the old X11
distribution terms.) Before they said yes or no to this proposal, it had already
failed for another reason: the XFree86 group followed the X Consortium’s old
policy, and will not accept copylefted software.

In September 1998, several months after X11R6.4 was released with nonfree
distribution terms, the Open Group reversed its decision and rereleased it under
the same noncopyleft free software license that was used for X11R6.3. Thus, the
Open Group therefore eventually did what was right, but that does not alter the
general issue.

Even if the X Consortium and the Open Group had never planned to re-
strict X, someone else could have done it. Noncopylefted software is vulnerable
from all directions; it lets anyone make a nonfree version dominant, if he will
invest sufficient resources to add significantly important features using propri-
etary code. Users who choose software based on technical characteristics, rather
than on freedom, could easily be lured to the nonfree version for short-term
convenience.

The X Consortium and Open Group can no longer exert moral suasion by
saying that it is wrong to say no. This will make it easier to decide to copyleft
your X-related software.

When you work on the core of X, on programs such as the X server, Xlib,
and Xt, there is a practical reason not to use copyleft. The X.org group does
an important job for the community in maintaining these programs, and the
benefit of copylefting our changes would be less than the harm done by a fork
in development. So it is better to work with them, and not copyleft our changes
on these programs. Likewise for utilities such as xset and xrdb, which are close
to the core of X and do not need major improvements. At least we know that
the X.org group has a firm commitment to developing these programs as free
software.

The issue is different for programs outside the core of X: applications, win-
dow managers, and additional libraries and widgets. There is no reason not to
copyleft them, and we should copyleft them.

In case anyone feels the pressure exerted by the criteria for inclusion in the X
distributions, the GNU Project will undertake to publicize copylefted packages
that work with X. If you would like to copyleft something, and you worry that
its omission from the X distribution will impede its popularity, please ask us to
help.

At the same time, it is better if we do not feel too much need for popularity.
When a businessman tempts you with “more popularity,” he may try to convince

Chapter 36: The X Window System Trap 225

you that his use of your program is crucial to its success. Don’t believe it! If
your program is good, it will find many users anyway; you don’t need to feel
desperate for any particular users, and you will be stronger if you do not. You
can get an indescribable sense of joy and freedom by responding, “Take it or
leave it—that’s no skin off my back.” Often the businessman will turn around
and accept the program with copyleft, once you call the bluff.

Friends, free software developers, don’t repeat old mistakes! If we do not
copyleft our software, we put its future at the mercy of anyone equipped with
more resources than scruples. With copyleft, we can defend freedom, not just
for ourselves, but for our whole community.

Chapter 37: The Problem Is Software Controlled by Its Developer 227

37 The Problem Is Software Controlled by

Its Developer

I fully agree with Jonathan Zittrain’s conclusion that we should not abandon
general-purpose computers. Alas, I disagree completely with the path that led
him to it. He presents serious security problems as an intolerable crisis, but I’m
not convinced. Then he forecasts that users will panic in response and stampede
toward restricted computers (which he calls “appliances”), but there is no sign
of this happening.

Zombie machines are a problem, but not a catastrophe. Moreover, far from
panicking, most users ignore the issue. Today, people are indeed concerned about
the danger of phishing (mail and web pages that solicit personal information for
fraud), but using a browsing-only device instead of a general computer won’t
protect you from that.

Meanwhile, Apple has reported that 25 percent of iPhones have been un-
locked. Surely at least as many users would have preferred an unlocked iPhone
but were afraid to try a forbidden recipe to obtain it. This refutes the idea that
users generally prefer that their devices be locked.

It is true that a general computer lets you run programs designed to spy on
you, restrict you, or even let the developer attack you. Such programs include
KaZaA, RealPlayer, Adobe Flash, Windows Media Player, Microsoft Windows,
and MacOS. Windows Vista does all three of those things; it also lets Microsoft
change the software without asking, or command it to permanently cease normal
functioning.

But restricted computers are no help, because they present the same problem
for the same reason.

The iPhone is designed for remote attack by Apple. When Apple remotely
destroys iPhones that users have unlocked to enable other uses, that is no better
than when Microsoft remotely sabotages Vista. The TiVo is designed to en-
force restrictions on access to the recordings you make, and reports what you
watch. E-book readers such as the Amazon “Swindle” are designed to stop you
from sharing and lending your books. Features that artificially obstruct use of
your data are known as Digital Restrictions Management (DRM); our protest
campaign against DRM is hosted at http://defectivebydesign.org. (Our
adversaries call DRM “Digital Rights Management” based on their idea that
restricting you is their right. When you choose a term, you choose your side.)

Copyright c© 2008, 2010 Richard Stallman
This article was first published in the March/April 2008 issue of

http://bostonreview.net and is a response to Jonathan Zittrain’s “Protecting
the Internet without Wrecking It,” which was published in the same issue and is
available at http://bostonreview.net/BR33.2/zittrain.php. This version is part
of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://defectivebydesign.org
http://bostonreview.net
http://bostonreview.net/BR33.2/zittrain.php

228 Free Software, Free Society, 2nd ed.

The nastiest of the common restricted devices are cell phones. They transmit
signals for tracking your whereabouts even when switched “off”; the only way to
stop this is to take out all the batteries. Many can also be turned on remotely,
for listening, unbeknownst to you. (The FBI is already taking advantage of
this feature, and the US Commerce Department lists this danger in its Security
Guide.) Cellular phone network companies regularly install software in users
phones, without asking, to impose new usage restrictions.

With a general computer you can escape by rejecting such programs. You
don’t have to have KaZaA, RealPlayer, Adobe Flash, Windows Media Player,
Microsoft Windows or MacOS on your computer (I don’t). By contrast, a re-
stricted computer gives you no escape from the software built into it.

The root of this problem, both in general PCs and restricted computers, is
software controlled by its developer. The developer (typically a corporation)
controls what the program does, and prevents everyone else from changing it. If
the developer decides to put in malicious features, even a master programmer
cannot easily remove them.

The remedy is to give the users more control, not less. We must insist on
free/libre software, software that the users are free to change and redistribute.
Free/libre software develops under the control of its users: if they don’t like its
features, for whatever reason, they can change them. If you’re not a programmer,
you still get the benefit of control by the users. A programmer can make the
improvements you would like, and publish the changed version. Then you can
use it too.

With free/libre software, no one has the power to make a malicious feature
stick. Since the source code is available to the users, millions of programmers are
in a position to spot and remove the malicious feature and release an improved
version; surely someone will do it. Others can then compare the two versions to
verify independently which version treats users right. As a practical fact, free
software is generally free of designed-in malware.

Many people do acquire restricted devices, but not for motives of security.
Why do people choose them?

Sometimes it is because the restricted devices are physically smaller. I edit
text all day (literally) and I find the keyboard and screen of a laptop well worth
the size and weight. However, people who use computers differently may prefer
something that fits in a pocket. In the past, these devices have typically been
restricted, but they weren’t chosen for that reason.

Now they are becoming less restricted. In fact, the OpenMoko cell phone
features a main computer running entirely free/libre software, including the
GNU/Linux operating system normally used on PCs and servers.

A major cause for the purchase of some restricted computers is financial
sleight of hand. Game consoles, and the iPhone, are sold for an unsustainably
low price, and the manufacturers subsequently charge when you use them. Thus,
game developers must pay the game console manufacturer to distribute a game,
and they pass this cost on to the user. Likewise, AT&T pays Apple when an

Chapter 37: The Problem Is Software Controlled by Its Developer 229

iPhone is used as a telephone. The low up-front price misleads customers into
thinking they will save money.

If we are concerned about the spread of restricted computers, we should
tackle the issue of the price deception that sells them. If we are concerned about
malware, we should insist on free software that gives the users control.

Postnote

Zittrain’s suggestion to reduce the statute of limitations on software patent law-
suits is a tiny step in the right direction, but it is much easier to solve the
whole problem. Software patents are an unnecessary, artificial danger imposed
on all software developers and users in the US. Every program is a combina-
tion of many methods and techniques—thousands of them in a large program.
If patenting these methods is allowed, then hundreds of those used in a given
program are probably patented. (Avoiding them is not feasible; there may be
no alternatives, or the alternatives may be patented too.) So the developers of
the program face hundreds of potential lawsuits from parties unknown, and the
users can be sued as well.

The complete, simple solution is to eliminate patents from the field of
software. Since the patent system is created by statute, eliminating patents
from software will be easy given sufficient political will. (See http://www.

endsoftpatents.org.)

http://www.endsoftpatents.org
http://www.endsoftpatents.org

Chapter 38: We Can Put an End to Word Attachments 231

38 We Can Put an End to Word Attachments

Don’t you just hate receiving Word documents in email messages? Word attach-
ments are annoying, but, worse than that, they impede people from switching
to free software. Maybe we can stop this practice with a simple collective effort.
All we have to do is ask each person who sends us a Word file to reconsider that
way of doing things.

Most computer users use Microsoft Word. That is unfortunate for them, since
Word is proprietary software, denying its users the freedom to study, change,
copy, and redistribute it. And because Microsoft changes the Word file format
with each release, its users are locked into a system that compels them to buy
each upgrade whether they want a change or not. They may even find, several
years from now, that the Word documents they are writing this year can no
longer be read with the version of Word they use then.

But it hurts us, too, when they assume we use Word and send us (or demand
that we send them) documents in Word format. Some people publish or post
documents in Word format. Some organizations will only accept files in Word
format: I heard from someone that he was unable to apply for a job because
resumes had to be Word files. Even governments sometimes impose Word format
on the public, which is truly outrageous.

For us users of free operating systems, receiving Word documents is an in-
convenience or an obstacle. But the worst impact of sending Word format is on
people who might switch to free systems: they hesitate because they feel they
must have Word available to read the Word files they receive. The practice of
using the secret Word format for interchange impedes the growth of our com-
munity and the spread of freedom. While we notice the occasional annoyance of
receiving a Word document, this steady and persistent harm to our community
usually doesn’t come to our attention. But it is happening all the time.

Many GNU users who receive Word documents try to find ways to handle
them. You can manage to find the somewhat obfuscated ASCII text in the file
by skimming through it. Free software today can read most Word documents,
but not all—the format is secret and has not been entirely decoded. Even worse,
Microsoft can change it at any time.

Worst of all, it has already done so. Microsoft Office 2007 uses by default
a format based on the patented OOXML format. (This is the one that Mi-
crosoft got declared an “open standard” by political manipulation and packing
standards committees.) The actual format is not entirely OOXML, and it is
not entirely documented. Microsoft offers a gratis patent license for OOXML

Copyright c© 2002, 2007, 2010 Richard Stallman
This essay was originally published on http://gnu.org, in 2002. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

232 Free Software, Free Society, 2nd ed.

on terms which do not allow free implementations. We are thus beginning to
receive Word files in a format that free programs are not even allowed to read.

When you receive a Word file, if you think of that as an isolated event, it is
natural to try to cope by finding a way to read it. Considered as an instance of
a pernicious systematic practice, it calls for a different approach. Managing to
read the file is treating a symptom of an epidemic disease; what we really want
to do is stop the disease from spreading. That means we must convince people
not to send or post Word documents.

I therefore make a practice of responding to Word attachments with a polite
message explaining why the practice of sending Word files is a bad thing, and
asking the person to resend the material in a nonsecret format. This is a lot less
work than trying to read the somewhat obfuscated ASCII text in the Word file.
And I find that people usually understand the issue, and many say they will not
send Word files to others any more.

If we all do this, we will have a much larger effect. People who disregard
one polite request may change their practice when they receive multiple polite
requests from various people. We may be able to give Don’t send Word format!
the status of netiquette, if we start systematically raising the issue with everyone
who sends us Word files.

To make this effort efficient, you will probably want to develop a canned reply
that you can quickly send each time it is necessary. I’ve included two examples:
the version I have been using recently, followed by a new version that teaches a
Word user how to convert to other useful formats.

• You sent the attachment in Microsoft Word format, a secret proprietary
format, so I cannot read it. If you send me the plain text, HTML, or
PDF, then I could read it.

Sending people documents in Word format has bad effects, because that
practice puts pressure on them to use Microsoft software. In effect, you
become a buttress of the Microsoft monopoly. This specific problem is a
major obstacle to the broader adoption of GNU/Linux. Would you please
reconsider the use of Word format for communication with other people?

• You sent the attachment in Microsoft Word format, a secret proprietary
format, so it is hard for me to read. If you send me plain text, HTML, or
PDF, then I will read it.

Distributing documents in Word format is bad for you and for others.
You can’t be sure what they will look like if someone views them with a
different version of Word; they may not work at all.

Receiving Word documents is bad for you because they can carry viruses
(see http://en.wikipedia.org/wiki/Macro_virus_(computing)). Send-
ing Word documents is bad for you because a Word document normally
includes hidden information about the author, enabling those in the know
to pry into the author’s activities (maybe yours). Text that you think you
deleted may still be embarrassingly present. See http://news.bbc.co.uk/

2/hi/technology/3154479.stm for more info.

But above all, sending people Word documents puts pressure on them to
use Microsoft software and helps to deny them any other choice. In effect,

http://en.wikipedia.org/wiki/Macro_virus_(computing)
http://news.bbc.co.uk/2/hi/technology/3154479.stm
http://news.bbc.co.uk/2/hi/technology/3154479.stm

Chapter 38: We Can Put an End to Word Attachments 233

you become a buttress of the Microsoft monopoly. This pressure is a ma-
jor obstacle to the broader adoption of free software. Would you please
switch to a different way of sending files to other people, instead of Word
format?

To convert the file to HTML using Word is simple. Open the document,
click on File, then Save As, and in the Save As Type strip box at the bot-
tom of the box, choose HTML Document or Web Page. Then choose Save.
You can then attach the new HTML document instead of your Word doc-
ument. Note that Word changes in inconsistent ways—if you see slightly
different menu item names, please try them.

To convert to plain text is almost the same—instead of HTML Document,
choose Text Only or Text Document as the Save As Type.

Your computer may also have a program to convert to PDF format. Se-
lect File, then Print. Scroll through available printers and select the
PDF converter. Click on the Print button and enter a name for the PDF
file when requested.

See http://gnu.org/philosophy/no-word-attachments.html for more
about this issue.

You can use these replies verbatim if you like, or you can personalize them
or write your own. By all means construct a reply that fits your ideas and
your personality—if the replies are personal and not all alike, that will make the
campaign more effective.

These replies are meant for individuals who send Word files. When you
encounter an organization that imposes use of Word format, that calls for a
different sort of reply; there you can raise issues of fairness that would not apply
to an individual’s actions.

Some recruiters ask for resumes in Word format. Ludicrously, some re-
cruiters do this even when looking for someone for a free software job. (Anyone
using those recruiters for free software jobs is not likely to get a competent
employee.) To help change this practice, you can put a link to http://gnu.

org/philosophy/no-word-attachments.html into your resume, next to links
to other formats of the resume. Anyone hunting for a Word version of the resume
will probably read the page.

This essay talks about Word attachments, since they are by far the most
common case. However, the same issues apply with other proprietary formats,
such as PowerPoint and Excel. Please feel free to adapt the replies to cover those
as well.

With our numbers, simply by asking, we can make a difference.

http://gnu.org/philosophy/no-word-attachments.html
http://gnu.org/philosophy/no-word-attachments.html
http://gnu.org/philosophy/no-word-attachments.html

Chapter 39: Thank You, Larry McVoy 235

39 Thank You, Larry McVoy

For the first time in my life, I want to thank Larry McVoy. He recently eliminated
a major weakness of the free software community, by announcing the end of
his campaign to entice free software projects to use and promote his nonfree
software. Soon, Linux development will no longer use this program, and no
longer spread the message that nonfree software is a good thing if it’s convenient.

My gratitude is limited, since it was McVoy that created the problem in the
first place. But I still appreciate his decision to clear it up.

There are thousands of nonfree programs, and most merit no special at-
tention, other than developing a free replacement. What made this program,
BitKeeper, infamous and dangerous was its marketing approach: inviting high-
profile free software projects to use it, so as to attract other paying users.

McVoy made the program available gratis to free software developers. This
did not mean it was free software for them: they were privileged not to part with
their money, but they still had to part with their freedom. They gave up the
fundamental freedoms that define free software: freedom to run the program as
you wish for any purpose, freedom to study and change the source code as you
wish, freedom to make and redistribute copies, and freedom to publish modified
versions.

The free software movement has said, “Think of ‘free speech,’ not ‘free beer’ ”
since 1990. McVoy said the opposite; he invited developers to focus on the lack
of monetary price, instead of on freedom. A free software activist would dismiss
this suggestion, but those in our community who value technical advantage above
freedom and community were susceptible to it.

McVoy’s great triumph was the adoption of this program for Linux develop-
ment. No free software project is more visible than Linux. It is the kernel of the
GNU/Linux operating system, an essential component, and users often mistake
it for the entire system. As McVoy surely planned, the use of his program in
Linux development was powerful publicity for it.

It was also, whether intentionally or not, a powerful political PR campaign,
telling the free software community that freedom-denying software is acceptable
as long as it’s convenient. If we had taken that attitude towards Unix in 1984,
where would we be today? Nowhere. If we had accepted using Unix, instead of
setting out to replace it, nothing like the GNU/Linux system would exist.

Of course, the Linux developers had practical reasons for what they did. I
won’t argue with those reasons; they surely know what’s convenient for them.
But they did not count, or did not value, how this would affect their freedom—or
the rest of the community’s efforts.

Copyright c© 2005 Richard Stallman
This essay was originally published on http://gnu.org, in 2005. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

236 Free Software, Free Society, 2nd ed.

A free kernel, even a whole free operating system, is not sufficient to use your
computer in freedom; we need free software for everything else, too. Free appli-
cations, free drivers, free BIOS: some of those projects face large obstacles—the
need to reverse engineer formats or protocols or pressure companies to document
them, or to work around or face down patent threats, or to compete with a net-
work effect. Success will require firmness and determination. A better kernel is
desirable, to be sure, but not at the expense of weakening the impetus to liberate
the rest of the software world.

When the use of his program became controversial, McVoy responded with
distraction. For instance, he promised to release it as free software if the company
went out of business. Alas, that does no good as long as the company remains in
business. Linux developers responded by saying, “We’ll switch to a free program
when you develop a better one.” This was an indirect way of saying, “We made
the mess, but we won’t clean it up.”

Fortunately, not everyone in Linux development considered a nonfree pro-
gram acceptable, and there was continuing pressure for a free alternative. Finally
Andrew Tridgell developed an interoperating free program, so Linux developers
would no longer need to use a nonfree program.

McVoy first blustered and threatened, but ultimately chose to go home and
take his ball with him: he withdrew permission for gratis use by free software
projects, and Linux developers will move to other software. The program they
no longer use will remain unethical as long as it is nonfree, but they will no
longer promote it, nor by using it teach others to give freedom low priority. We
can begin to forget about that program.

We should not forget the lesson we have learned from it: Nonfree programs
are dangerous to you and to your community. Don’t let them get a place in your
life.

Part VII:

An Assessment and a Look Ahead

Chapter 40: Computing “Progress”: Good and Bad 239

40 Computing “Progress”: Good and Bad

Bradley Horowitz of Yahoo proposed here1 that every object in our world have
a unique number so that your cell phone could record everything you do—even
which cans you picked up while in the supermarket.

If the phone is like today’s phones, it will use proprietary software: software
controlled by the companies that developed it, not by its users. Those companies
will ensure that your phone makes the information it collects about you available
to the phone company’s database (let’s call it Big Brother) and probably to other
companies.

In the UK of the future, as New Labour would have it, those companies will
surely turn this information over to the police. If your phone reports you bought
a wooden stick and a piece of poster board, the phone company’s system will
deduce that you may be planning a protest, and report you automatically to the
police so they can accuse you of “terrorism.”

In the UK, it is literally an offense to be suspect—more precisely, to possess
any object in circumstances that create a “reasonable suspicion” that you might
use it in certain criminal ways. Your phone will give the police plenty of oppor-
tunities to suspect you so they can charge you with having been suspected by
them. Similar things will happen in China, where Yahoo has already given the
government all the information it needed to imprison a dissident; it subsequently
asked for our understanding on the excuse that it was “just following orders.”

Horowitz would like cell phones to tag information automatically, based on
knowing when you participate in an event or meeting. That means the phone
company will also know precisely whom you meet. That information will also be
interesting to governments, such as those of the UK and China, that cut corners
on human rights.

I do not much like Horowitz’s vision of total surveillance. Rather, I envision
a world in which our computers never collect, or release, any information about
us except when we want them to.

Nonfree software does other nasty things besides spying; it often implements
digital handcuffs—features designed to restrict the users (also called DRM, for
Digital Restrictions Management). These features control how you can access,
copy, or move the files in your own computer.

1 Bradley Horowitz, “The Tech Lab: Bradley Horowitz,” BBC News,
29 June 2007, http://news.bbc.co.uk/2/hi/technology/6252716.stm.

Copyright c© 2006, 2007 Richard Stallman
The BBC invited me to write an article for their column series, The Tech Lab,

and this is what I sent them. (It refers to a couple of other articles published in that
series.) The BBC was ultimately unwilling to publish it with a copying-permission
notice, so I published it on http://gnu.org, in 2007. This version of this essay is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://news.bbc.co.uk/2/hi/technology/6252716.stm
http://gnu.org

240 Free Software, Free Society, 2nd ed.

DRM is a common practice: Microsoft does it, Apple does it, Google does
it, even the BBC’s iPlayer does it. Many governments, taking the side of these
companies against the public, have made it illegal to tell others how to escape
from the digital handcuffs. As a result, competition does nothing to check the
practice: no matter how many proprietary alternatives you might have to choose
from, they will all handcuff you just the same. If the computer knows where you
are located, it can make DRM even worse: there are companies that would like
to restrict what you can access based on your present location.

My vision of the world is different. I would like to see a world in which all the
software in our computers — in our desktop PCs, our laptops, our handhelds,
our phones — is under our control and respects our freedom. In other words, a
world where all software is free software.

Free software, freedom-respecting software, means that every user of the
program is free to get the program’s source code and change the program to
do what she wants, and also free to give away or sell copies, either exact or
modified. This means the users are in control. With the users in control of the
software, nobody has power to impose nasty features on others.

Even if you don’t exercise this control yourself, you are part of a society
where others do. If you are not a programmer, other users of the program are.
They will probably find and remove any nasty features, which might spy on
or restrict you, and publish safe versions. You will have only to elect to use
them—and since all other users will prefer them, that will usually happen with
no effort on your part.

Charles Stross envisioned computers that permanently record everything that
we see and hear.2 Those records could be very useful, as long as Big Brother
doesn’t see and hear all of them. Today’s cell phones are already capable of
listening to their users without informing them, at the request of the police,
the phone company, or anyone that knows the requisite commands. As long as
phones use nonfree software, controlled by its developers and not by the users,
we must expect this to get worse. Only free software enables computer-using
citizens to resist totalitarian surveillance.

Dave Winer’s article3 suggested that Mr. Gates should send a copy of Win-
dows Vista to Alpha Centauri. I understand the feeling, but sending just one
won’t solve our problem here on Earth. Windows is designed to spy on users
and restrict them. We should collect all the copies of Windows, and of MacOS
and iPlayer for the same reason, and send them to Alpha Centauri at the slowest
possible speed. Or just erase them.

2 Charles Stross, “The Tech Lab: Charles Stross,” BBC News, 10 July 2007,
http://news.bbc.co.uk/2/hi/technology/6287126.stm.

3 Dave Winer, “The Tech Lab: Dave Winer,” BBC News, 14 June 2007,
http://news.bbc.co.uk/2/hi/technology/6748103.stm.

http://news.bbc.co.uk/2/hi/technology/6287126.stm
http://news.bbc.co.uk/2/hi/technology/6748103.stm

Chapter 41: Avoiding Ruinous Compromises 241

41 Avoiding Ruinous Compromises

The free software movement aims for a social change: to make all software free
so that all software users are free and can be part of a community of cooperation.
Every nonfree program gives its developer unjust power over the users. Our goal
is to put an end to that injustice.

The road to freedom is a long road. It will take many steps and many years
to reach a world in which it is normal for software users to have freedom. Some
of these steps are hard, and require sacrifice. Some of them become easier if we
make compromises with people that have different goals.

Thus, the Free Software Foundation makes compromises—even major ones.
For instance, we made compromises in the patent provisions of version 3 of the
GNU General Public License (GNU GPL) so that major companies would con-
tribute to and distribute GPLv3-covered software and thus bring some patents
under the effect of these provisions.

The Lesser GPL’s purpose is a compromise: we use it on certain chosen free
libraries to permit their use in nonfree programs because we think that legally
prohibiting this would only drive developers to proprietary libraries instead. We
accept and install code in GNU programs to make them work together with
common nonfree programs, and we document and publicize this in ways that
encourage users of the latter to install the former, but not vice versa. We
support specific campaigns we agree with, even when we don’t fully agree with
the groups behind them.

But we reject certain compromises even though many others in our commu-
nity are willing to make them. For instance, we endorse only the GNU/Linux
distributions that have policies not to include nonfree software or lead users to
install it. To endorse nonfree distributions would be a ruinous compromise.

Compromises are ruinous if they would work against our aims in the long
term. That can occur either at the level of ideas or at the level of actions.

At the level of ideas, ruinous compromises are those that reinforce the
premises we seek to change. Our goal is a world in which software users are
free, but as yet most computer users do not even recognize freedom as an issue.
They have taken up “consumer” values, which means they judge any program
only on practical characteristics such as price and convenience.

Dale Carnegie’s classic self-help book, How to Win Friends and Influence
People, advises that the most effective way to persuade someone to do something
is to present arguments that appeal to his values. There are ways we can appeal

Copyright c© 2008, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 2008. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

This chapter is licensed under the Creative Commons Attribution-NoDerivs 3.0 United
States License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nd/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California 94105, USA.

http://gnu.org
http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/

242 Free Software, Free Society, 2nd ed.

to the consumer values typical in our society. For instance, free software obtained
gratis can save the user money. Many free programs are convenient and reliable,
too. Citing those practical benefits has succeeded in persuading many users to
adopt various free programs, some of which are now quite successful.

If getting more people to use some free programs is as far as you aim to go,
you might decide to keep quiet about the concept of freedom, and focus only on
the practical advantages that make sense in terms of consumer values. That’s
what the term “open source” and its associated rhetoric do.

That approach can get us only part way to the goal of freedom. People who
use free software only because it is convenient will stick with it only as long as
it is convenient. And they will see no reason not to use convenient proprietary
programs along with it.

The philosophy of open source presupposes and appeals to consumer values,
and this affirms and reinforces them. That’s why we do not support open source.

To establish a free community fully and lastingly, we need to do more than
get people to use some free software. We need to spread the idea of judging
software (and other things) on “citizen values,” based on whether it respects
users’ freedom and community, not just in terms of convenience. Then people
will not fall into the trap of a proprietary program baited by an attractive,
convenient feature.

To promote citizen values, we have to talk about them and show how they
are the basis of our actions. We must reject the Dale Carnegie compromise that
would influence their actions by endorsing their consumer values.

This is not to say we cannot cite practical advantage at all—we can and we
do. It becomes a problem only when the practical advantage steals the scene
and pushes freedom into the background. Therefore, when we cite the practical
advantages of free software, we reiterate frequently that those are just additional,
secondary reasons to prefer it.

It’s not enough to make our words accord with our ideals; our actions have
to accord with them too. So we must also avoid compromises that involve doing
or legitimizing the things we aim to stamp out.

For instance, experience shows that you can attract some users to
GNU/Linux if you include some nonfree programs. This could mean a cute
nonfree application that will catch some user’s eye, or a nonfree programming
platform such as Java (formerly) or the Flash runtime (still), or a nonfree
device driver that enables support for certain hardware models.

These compromises are tempting, but they undermine the goal. If you dis-
tribute nonfree software, or steer people towards it, you will find it hard to say,
“Nonfree software is an injustice, a social problem, and we must put an end to
it.” And even if you do continue to say those words, your actions will undermine
them.

The issue here is not whether people should be able or allowed to install non-
free software; a general-purpose system enables and allows users to do whatever
they wish. The issue is whether we guide users towards nonfree software. What
they do on their own is their responsibility; what we do for them, and what we

Chapter 41: Avoiding Ruinous Compromises 243

direct them towards, is ours. We must not direct the users towards proprietary
software as if it were a solution, because proprietary software is the problem.

A ruinous compromise is not just a bad influence on others. It can distort
your own values, too, through cognitive dissonance. If you have certain values,
but your actions imply other, conflicting values, you are likely to change your
values or your actions so as to resolve the contradiction. Thus, projects that
argue only from practical advantages, or direct people toward some nonfree
software, nearly always shy away from even suggesting that nonfree software
is unethical. For their participants, as well as for the public, they reinforce
consumer values. We must reject these compromises if we wish to keep our
values straight.

If you want to move to free software without compromising the goal of free-
dom, look at the FSF’s resources area. It lists hardware and machine configura-
tions that work with free software, totally free GNU/Linux distros to install, and
thousands of free software packages that work in a 100 percent free software en-
vironment. If you want to help the community stay on the road to freedom, one
important way is to publicly uphold citizen values. When people are discussing
what is good or bad, or what to do, cite the values of freedom and community
and argue from them.

A road that lets you go faster is no improvement if it leads to the wrong
place. Compromise is essential to achieve an ambitious goal, but beware of
compromises that lead away from the goal.

Chapter 42: Overcoming Social Inertia 245

42 Overcoming Social Inertia

Almost two decades have passed since the combination of GNU and Linux first
made it possible to use a PC in freedom. We have come a long way since
then. Now you can even buy a laptop with GNU/Linux preinstalled from more
than one hardware vendor—although the systems they ship are not entirely free
software. So what holds us back from total success?

The main obstacle to the triumph of software freedom is social inertia. It
exists in many forms, and you have surely seen some of them. Examples include
devices that only work on Windows and commercial web sites accessible only
with Windows. If you value short-term convenience instead of freedom, you
might consider these reason enough to use Windows. Most companies currently
run Windows, so students who think short-term want to learn how to use it and
ask their schools to teach it. Schools teach Windows, produce graduates that
are used to using Windows, and this encourages businesses to use Windows.

Microsoft actively nurtures this inertia: it encourages schools to inculcate
dependency on Windows, and contracts to set up web sites that then turn out
to work only with Internet Explorer.

A few years ago, Microsoft ads argued that Windows was cheaper to run
than GNU/Linux. Their comparisons were debunked, but it is worth noting the
deeper flaw in their argument, the implicit premise which cites a form of social
inertia: “Currently, more technical people know Windows than GNU/Linux.”
People who value their freedom would not give it up to save money, but many
business executives believe ideologically that everything they possess, even their
freedom, should be for sale.

Social inertia consists of people who have given in to social inertia. When you
surrender to social inertia, you become part of the pressure it exerts on others;
when you resist it, you reduce it. We conquer social inertia by identifying it,
and resolving not to be part of it.

Here a weakness holds our community back: most GNU/Linux users have
never even heard the ideas of freedom that motivated the development of GNU,
so they still judge matters based on short-term convenience rather than on their
freedom. This makes them vulnerable to being led by the nose by social inertia,
so that they become part of the inertia.

To build our community’s strength to resist, we need to talk about free
software and freedom—not merely about the practical benefits that open source
supporters cite. As more people recognize what they need to do to overcome the
inertia, we will make more progress.

Copyright c© 2007, 2009 Richard Stallman
This essay was originally published on http://gnu.org, in 2007. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

Chapter 43: Freedom or Power? 247

43 Freedom or Power?

Written by Bradley M. Kuhn and Richard Stallman.

The love of liberty is the love of others; the love of power is the love of ourselves.

—William Hazlitt

In the free software movement, we stand for freedom for the users of software. We
formulated our views by looking at what freedoms are necessary for a good way of
life, and permit useful programs to foster a community of goodwill, cooperation,
and collaboration. Our criteria for free software specify the freedoms that a
program’s users need so that they can cooperate in a community.

We stand for freedom for programmers as well as for other users. Most of
us are programmers, and we want freedom for ourselves as well as for you. But
each of us uses software written by others, and we want freedom when using
that software, not just when using our own code. We stand for freedom for all
users, whether they program often, occasionally, or not at all.

However, one so-called freedom that we do not advocate is the “freedom to
choose any license you want for software you write.” We reject this because it
is really a form of power, not a freedom.

This oft overlooked distinction is crucial. Freedom is being able to make
decisions that affect mainly you; power is being able to make decisions that
affect others more than you. If we confuse power with freedom, we will fail to
uphold real freedom.

Making a program proprietary is an exercise of power. Copyright law today
grants software developers that power, so they and only they choose the rules
to impose on everyone else—a relatively small number of people make the basic
software decisions for all users, typically by denying their freedom. When users
lack the freedoms that define free software, they can’t tell what the software
is doing, can’t check for back doors, can’t monitor possible viruses and worms,
can’t find out what personal information is being reported (or stop the reports,
even if they do find out). If it breaks, they can’t fix it; they have to wait for the
developer to exercise its power to do so. If it simply isn’t quite what they need,
they are stuck with it. They can’t help each other improve it.

Proprietary software developers are often businesses. We in the free software
movement are not opposed to business, but we have seen what happens when
a software business has the “freedom” to impose arbitrary rules on the users
of software. Microsoft is an egregious example of how denying users’ freedoms

Copyright c© 2001, 2009 Bradley M. Kuhn and Richard Stallman
This essay was originally published on http://gnu.org, in 2001. This version is

part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://gnu.org

248 Free Software, Free Society, 2nd ed.

can lead to direct harm, but it is not the only example. Even when there is
no monopoly, proprietary software harms society. A choice of masters is not
freedom.

Discussions of rights and rules for software have often concentrated on the
interests of programmers alone. Few people in the world program regularly, and
fewer still are owners of proprietary software businesses. But the entire developed
world now needs and uses software, so software developers now control the way it
lives, does business, communicates, and is entertained. The ethical and political
issues are not addressed by the slogan of “freedom of choice (for developers
only).”

If “code is law,”1 then the real question we face is: who should control the
code you use—you, or an elite few? We believe you are entitled to control the
software you use, and giving you that control is the goal of free software.

We believe you should decide what to do with the software you use; however,
that is not what today’s law says. Current copyright law places us in the position
of power over users of our code, whether we like it or not. The ethical response to
this situation is to proclaim freedom for each user, just as the Bill of Rights was
supposed to exercise government power by guaranteeing each citizen’s freedoms.
That is what the GNU General Public License is for: it puts you in control of
your usage of the software while protecting you from others who would like to
take control of your decisions.

As more and more users realize that code is law, and come to feel that they
too deserve freedom, they will see the importance of the freedoms we stand for,
just as more and more users have come to appreciate the practical value of the
free software we have developed.

1 William J. Mitchell, City of Bits: Space, Place, and the Infobahn (Cambridge,
Mass.: MIT Press, 1995), p. 111, as quoted by Lawrence Lessig in Code and
Other Laws of Cyberspace, Version 2.0 (New York, NY: Basic Books, 2006), p. 5.

Appendix A: A Note on Software 249

Appendix A: A Note on Software

Written by Richard E. Buckman and Joshua Gay.

This section is intended for people who have little or no knowledge of the
technical aspects of computer science. It is not necessary to read this section to
understand the essays and speeches presented in this book; however, it may be
helpful to those readers not familiar with some of the jargon that comes with
programming and computer science.

A computer programmer writes software, or computer programs. A program
is more or less a recipe with commands to tell the computer what to do in order
to carry out certain tasks. You are more than likely familiar with many different
programs: your Web browser, your word processor, your email client, and the
like.

A program usually starts out as source code. This higher-level set of com-
mands is written in a programming language such as C or Java. After that,
a tool known as a compiler translates this to a lower-level language known as
assembly language. Another tool known as an assembler breaks the assembly
code down to the final stage of machine language—the lowest level—which the
computer understands natively.

For example, consider the “hello world” program, a common first program for
people learning C, which (when compiled and executed) prints “Hello World!”
on the screen.1

int main(){

printf(’’Hello World!’’);

return 0;

}

1 In other programming languages, such as Scheme, the Hello World program is
usually not your first program. In Scheme you often start with a program like this:

(define (factorial n)

(if (= n 0)

1

(* n (factorial (- n 1)))))

This computes the factorial of a number; that is, running (factorial 5)would
output 120, which is computed by doing 5 * 4 * 3 * 2 * 1 * 1.

This note was originally published in 2002, in the first edition. This version is part
of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

250 Free Software, Free Society, 2nd ed.

In the Java programming language the same program would be written like
this:

public class hello {

public static void main(String args[]) {

System.out.println(’’Hello World!’’);

}

}

However, in machine language, a small section of it may look similar to this:

1100011110111010100101001001001010101110

0110101010011000001111001011010101111101

0100111111111110010110110000000010100100

0100100001100101011011000110110001101111

0010000001010111011011110111001001101100

0110010000100001010000100110111101101111

The above form of machine language is the most basic representation known
as binary. All data in computers is made up of a series of 0-or-1 values, but a
person would have much difficulty understanding the data. To make a simple
change to the binary, one would have to have an intimate knowledge of how
a particular computer interprets the machine language. This could be feasible
for small programs like the above examples, but any interesting program would
involve an exhausting effort to make simple changes.

As an example, imagine that we wanted to make a change to our “Hello
World” program written in C so that instead of printing “Hello World” in English
it prints it in French. The change would be simple; here is the new program:

int main() {

printf(’’Bonjour, monde!’’);

return 0;

}

It is safe to say that one can easily infer how to change the program written
in the Java programming language in the same way. However, even many pro-
grammers would not know where to begin if they wanted to change the binary
representation. When we say “source code,” we do not mean machine language
that only computers can understand—we are speaking of higher-level languages
such as C and Java. A few other popular programming languages are C++,
Perl, and Python. Some are harder than others to understand and program in,
but they are all much easier to work with compared to the intricate machine
language they get turned into after the programs are compiled and assembled.

Another important concept is understanding what an operating system is.
An operating system is the software that handles input and output, memory
allocation, and task scheduling. Generally one considers common or useful pro-
grams such as the Graphical User Interface (GUI) to be a part of the operating
system. The GNU/Linux operating system contains a both GNU and non-GNU
software, and a kernel called Linux. The kernel handles low-level tasks that
applications depend upon such as input/output and task scheduling. The GNU
software comprises much of the rest of the operating system, including GCC, a

Appendix A: A Note on Software 251

general-purpose compiler for many languages; GNU Emacs, an extensible text
editor with many, many features; GNOME, the GNU desktop; GNU libc, a
library that all programs other than the kernel must use in order to communi-
cate with the kernel; and Bash, the GNU command interpreter that reads your
command lines. Many of these programs were pioneered by Richard Stallman
early on in the GNU Project and come with any modern GNU/Linux operating
system.

It is important to understand that even if you cannot change the source code
for a given program, or directly use all these tools, it is relatively easy to find
someone who can. Therefore, by having the source code to a program you are
usually given the power to change, fix, customize, and learn about a program—
this is a power that you do not have if you are not given the source code. Source
code is one of the requirements that makes a piece of software free. The other
requirements will be found along with the philosophy and ideas behind them in
this collection.

Appendix B: Translations of the Term “Free Software” 253

Appendix B: Translations of the Term

“Free Software”

The following is a list of recommended unambiguous translations of the term
“free software” into various languages:

− Afrikaans: vrye sagteware

− Albanian: software i lirë

− Arabic:
���� ��� �� ������

− Belarusian: свабоднае праграмнае забесьпячэньне
− Bulgarian: свободен софтуер
− Catalan: programari lliure

− Chinese: 自由软件 (simplified),自由軟體 (traditional)

− Czech: svobodný software

− Croatian/Serbian: slobodni softver

− Danish: fri software or frit programmel

− Dutch: vrije software

− Esperanto: libera programaro

− Estonian: vaba tarkvara

− Farsi: ��ما��ار ازٓاد
− Finnish: vapaa ohjelmisto

− French: logiciel libre

− German: freie Software

− Greek: ελεύθερο λογισμικό
− Hungarian: szabad szoftver

− Icelandic: frjáls hugbúnaður

− Ido: libera programaro

− Indonesian: perangkat lunak bebas

− Interlingua: libere programmage or libere programmario

− Irish: bog earráı saoire

− Italian: software libero

The most current list of translations is maintained at http://www.gnu.org/
philosophy/fs-translations.html. Please e-mail any additional translations to
web-translators@gnu.org.

This version of the list is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 2nd ed. (Boston: GNU Press, 2010).

Verbatim copying and distribution of this entire chapter are permitted worldwide,
without royalty, in any medium, provided this notice is preserved.

http://www.gnu.org/philosophy/fs-translations.html
http://www.gnu.org/philosophy/fs-translations.html
mailto:web-translators@gnu.org

254 Free Software, Free Society, 2nd ed.

− Japanese:自由なソフトウェア orフリーソフトウェア

− Lithuanian: laisva programinė i�ranga

− Malay: perisian bebas

− Norwegian: fri programvare

− Polish: wolne oprogramowanie

− Portuguese: software livre

− Romanian: software liber

− Russian: свободное программное обеспечение
− Sardinian: software liberu

− Serbian/Croatian: слободни софтвер
− Slovak: slobodný softvér

− Slovenian: prosto programje

− Spanish: software libre

− Swahili: Programu huru za Kompyuta

− Swedish: fri programvara, fri mjukvara

− Tagalog: malayang software

− Tamil: கடடறற ெெனெொொரள
− Turkish: özgür yazılım

− Ukrainian: вільне програмне забезпечення
− Welsh: meddalwedd rydd

− Zulu: Isoftware Ekhululekile

Index 255

Index

1
1984, George Orwell 124, 210

6
68000-class hardware 8, 11, 28

A
abbreviations, patents on 149
AbiWord . 159
Ada compiler, GNU 59, 82
Ada language . 40
Adobe Flash 227–228
Affero General Public License (AGPL),

GNU . 181, 213
AI (Artificial Intelligence) Lab, MIT (see

also MIT) 7, 28, 34
Air Force, US . 40, 59
AJAX request . 220
Alix . 18
Alpha Centauri . 240
Amazon 124, 210, 227
Analog Devices . 40
Animal Farm, George Orwell 210
Apache . 185
Apache License 185, 187
Apple (see also DRM) 108, 146, 209
Apple, iPhone (see also cell phones)

. 227–229
Argentina . 108
ASCII . 194, 231–232
Association of American Publishers (see

also copyright) 117
AT&T . 228
Australia . 107

B
Barr, Joe . 88
BASH (Bourne Again Shell), GNU . . 14,

16–17, 130, 185
beamer class, TEX 99
Beethoven, Ludwig van 157–158
Berne Convention (see also copyright)

. 79
Big Brother . 239–240
BitKeeper . 235

BitTorrent . 187
Bono, Congressman Sonny 116
Bono, Congresswoman Mary 116
Brazil . 60, 107
BSD licenses (see also both “BSD-style”

and GPL) 80, 93, 223
“BSD-style,” problematic term 93
Bush, President George W. 213
Bushnell, Michael (now Thomas) 18
Business Software Alliance (BSA) (see

also Software Publishers
Association (SPA)) 108

C
C . 11, 48
C compiler . 25
C library 14, 16, 17, 18, 217
C programs 25, 167, 217
C++, language . 20
CAFTA . 107
Caldera . 74
call to action, beware of nonfree

programs . 236
call to action, beware of ruinous

compromises 243
call to action, block treacherous

computing . 207
call to action, boycott products with

DRM . 125
call to action, contribute to GNU 9,

29–30
call to action, cooperate 56
call to action, copyleft your software

. 225
call to action, defend progress of science

from copyright 122
call to action, develop more free software

. 66
call to action, do not authorize software

patents . 141
call to action, do not surrender freedom

in author’s name 120
call to action, donate 29–30, 241
call to action, fight for freedom 74
call to action, future challenges . . . 19–23
call to action, initial announcement . . 26

256 Free Software, Free Society, 2nd ed.

call to action, insist on free software
. 228

call to action, legalize noncommercial
copying and sharing of all published
works . 125

call to action, price deception . . 228–229
call to action, promote free

documentation 62
call to action, put an end to Word

attachments 231–233
call to action, raise funds 65, 66
call to action, release free software

. 59–60
call to action, resist illusory temptations

of proprietary software 224
call to action, SaaS threats 212–213
call to action, talk about freedom . . . 22,

245
call to action, teach others to value

freedom . 84, 88
call to action, upgrade to GPL version 3

. 185–187
call to action, uphold citizen values

publicly . 243
call to action, use copyleft 131
call to action, use correct terminology

(see also terminology) 6, 14, 75,
77–82, 84, 91, 93–102

call to action, use only free software in
schools . 57–58

call to action, write free documentation
. 66

Carnegie Mellon University 18
Carnegie, Dale . 241
Case, Steve . 95
cell phones (see also both OpenMoko and

Apple) 228, 239–240
Chaosnet (see also MIT) 25
Cheney, Dick . 56
China . 239
citizen values, consumer values v.

. 241–242
citizen values, convenience v. 14, 20,

60, 73, 87–88, 242, 245
citizen values, cooperation . . . 40, 47–48,

56
citizen values, distortion of 243
citizen values, future challenges to

. 19–22
citizen values, Golden Rule 26, 32
citizen values, open source v. free

software . 23, 83

citizen values, production v. freedom and
way of life 74, 90

citizen values, proprietary manuals . . . 62
citizen values, proprietary software and

. 8, 54
citizen values, publicly upholding . . . 243
citizen values, schools’ social mission

. 57
citizen values, social inertia v. 245
Clinton administration 117
Clipper chip . 107
“closed,” erroneous use of term 93
“cloud computing,” avoid use of term

. 93, 212
Cohen, Jerry . 166
Commerce Department, US 228
commercial software (see also software)

. 82, 94
commercial software, to be distinguished

from proprietary software 82
commercial use and development . . 4, 22
“commercial,” problematic use of term

. 94
Common Lisp . 27
communism . 54
Community ConneXion 108
“compensation,” false assumptions

connected to term 94
competition, impact on 32, 34, 37
competition, inevitability of 54
Compress . 145
Compress program 17
compromises, avoiding ruinous

. 241–243
compromises, GPL patent provisions

. 241
compromises, LGPL and 241
Constitution, authors’ natural rights and

US . 39
Constitution, copyright and US

. 111–117, 122
Constitution, copyright law, trademark

law, patent law, and US 90
Constitution, premise of author

supremacy and US 55–56
Constitution, US . 8
Consumer Broadband and Digital

Television Promotion Act
(CBDTPA) 94, 107, 118, 207

“consumer,” problematic use of term
(see also “open source”) 94

“content,” problematic use of term . . . 95

Index 257

copyleft (see also copyright) vi, 4–5,
127–128, 129–131, 165–169

copyleft, and GPL 79, 171
copyleft, FDL and 193
copyleft, GPL and 12–13, 185
copyleft, modified versions . . . 10, 12–13,

169, 174–175, 189–190
copyleft, X Consortium opposition to

. 223–224
copylefted software (see also software)

. 79, 127–128, 223–224
copyright (see also both copyleft and

DMCA) 4, 5, 44, 50–51, 55
copyright, and/or copyright law, as

distinguished from trademarks and
patents and/or trademark law and
patent law 89–91

copyright, Association of American
Publishers . 117

copyright, Berne Convention 79
copyright, “copyright bargain”

. 112–114, 118–120
copyright, “creator” 95
copyright, difference between patents

and . 157–158
copyright, digital technology and 37
copyright, disregard for US

Constitution’s view of 117
copyright, duration of term of

. 115–116, 119
copyright, enforcement measures 37
copyright, erroneous concept of

maximizing one output 114
copyright, erroneous concept of

maximizing publishers’ power . . 115
copyright, erroneous concept of “striking

a balance” 112–113
copyright, fair use 115, 119
copyright, fair use and libraries 117
copyright, false assumptions related to

“compensation” for authors 94
copyright, monopoly 55
copyright, “protection” 100
copyright, public domain software and

(see also public domain software)
. 78–79

Correa, President Rafael 107
Costa Rica . 107
“creator,” erroneous use of term 95
Cygnus Support . 40

D
da Silva, President Luis Inácio Lula

. 107
DADVSI (see also both DMCA and

DRM) . 107
“damage,” erroneous use of term 38
de Icaza, Miguel . 20
Debian GNU/Linux 22
DeCSS (see also both DMCA and DRM)

. 107
Defective by Design (see also DRM)

. 87, 108, 118, 207, 227
Deluxe Distributions, FSF 14
Devedjian, Minister Patrick 139
developers, (see also programmers) . . . 9,

18
developers, and creativity and

entitlement . 53
developers, collaboration between

. 16–17
developers, copyright law favors

. 247–248
developers, funding for 40
developers, GNU Project 15, 17
developers, incentive for 17
developers, manuals 22
developers, obligations of users to 53
developers, proprietary software 12,

73, 93, 101
developers, solid values for free software

. 60
developers, term “vendor” and 102
developers, to copyleft or not to

copyleft? 223–225
developers, traps for 20, 74
developers, universities 59–60
development, applying GPL 183
development, commercial software . . . 82
development, contributions and

donations 15, 26, 65
development, custom adaptation . . 49–50
development, developer control 228
development, funding for 13–14,

35–36, 52–53
development, fundraising 10, 65
development, obstruction of 50–51
development, patents 157–158, 229
development, private software 82
“digital goods,” problematic term 95
Digital Millennium Copyright Act

(DMCA) (see also DMCA, “Right

258 Free Software, Free Society, 2nd ed.

to Read,” fair use, DRM, and
libraries) 107–108

“Digital Rights Management,” avoid use
of term (see also DRM) 96, 227

Disney . 107, 118
DMCA (see also “Right to Read,” fair

use, DRM, and libraries) 74,
107–108, 206

DMCA, and fair use 117
DMCA, GPL version 3 and 186
DMCA, publishers and 116, 124
documentation (see also both FDL and

manuals) 21–22, 61–63
DRM, and Apple 240
DRM, and BBC iPlayer 240
DRM, and Google 240
DRM, and MacOS 240
DRM, and Microsoft 240
DRM, and Windows 240
DRM, call it “Digital Restrictions

Management” 96, 124–125, 186,
209, 227, 239–240

DRM, GPL version 3 and 186
DRM, open source and 86–87
DRM, treacherous computing and . . 205
DRM, Vista’s main purpose 108
DTD . 194

E
e-books 117–118, 124, 227
e-commerce . 211
ECMAScript . 219
Economist . 144
“ecosystem,” erroneous description of

free software community 96
Ecuador . 107
ed . 11
education, free software in 30, 57–60
Ellison, Larry . 93
Emacs, GNU 11–14, 17, 26, 27, 52,

130, 149, 212
Empire game . 25, 27
Enron . 56
European Parliament 101, 160
European Patent Office 140, 161
European Union 107, 118
European Union, proposed European

Union software patents directive
. 101, 139

Exxon . 56

F
Facebook . 212
fair use (see also copyright) . . . 115–119,

174
FBI . 108, 228
FCC . 118
FDL (see also both manuals and

documentation) . . . 13, 128, 193–201
FDL, introduction to 168
Felten, Edward . 117
FFT (fast Fourier transform) 147
FLAC . 98
Flash . 219
Flickr . 212
“for free,” erroneous use of term 96
Fortran . 48
four freedoms . 3
Fourth Amendment 109
Fox Film Corp. v. Doyal 55, 111
Fox, Brian . 14
France . 107, 139
Frank, Congressman Barney 117
Free Documentation License (FDL),

GNU (see also FDL, manuals, and
documentation) 193–201

free software (see also free software, four
freedoms, citizen values, selling, and
software) 3–6, 77–78

Free Software Foundation (FSF) (see
also FSF) 13–14

free software movement (see also GNU
Project) . 83–87

“Free Software Song” 69
free software, and export control

regulations . 5
free software, essential difference between

open source and 23, 78, 83–84
free software, four freedoms 3
free software, to be distinguished from

noncommercial software 4
“free software,” common

misunderstandings of 84–86
“free software,” unambiguous

translations of 10, 84, 253–254
Free Trade Area of the Americas

(FTAA) . 107
Free University Compiler Kit (VUCK)

. 11
“freely available,” erroneous use of term

. 96
freeware (see also software) 35, 97

Index 259

“freeware,” erroneous use of term 81
FSF, and selling GNU manuals 61
FSF, copyright on software 81
FSF, Deluxe Distributions 14
FSF, fundraising 14, 31
FSF, how you can help . . . 31, 52–53, 65,

241
FSF, on installing proprietary software

. 81
FSF, programmers 52–53
FSF, resources . 243
FSF, software development 81
FSF, universities . 59

G
games, Empire 25, 27
games, GPL and 167
games, patents and 149–150
games, price deception and 228
games, SaaS and multiplayer 211
games, Unix compatibility and 16
Gates, Bill . 240
GDB General Public License 165
General Public License (GPL), GNU

(see also GPL) 171–183
GIF . 21, 148
GIMP . 99, 212
“give away software,” misleading use of

term . 28, 97
GLAMP (GNU, Linux, Apache, MySQL

and PHP) system 98
Global Patronage (see also DRM and

copyright) . 125
GNOME (GNU Network Object Model

Environment) 17, 20
GNU (see also both software and GNU)

. . . . 9, 19, 59, 80–81, 143, 156, 165,
217, 241

GNU CC General Public License . . . 165
GNU Help Wanted list 29
“GNU Manifesto” 27–36
GNU Project (see also GNU) 7–23
GNU, acronym . 9
GNU, advertising for 31
GNU, GCC 11, 14, 40, 129–130, 185
GNU, GCJ . 216–217
GNU, GDB . 17–18
GNU, GDB General Public License

. 165
GNU, GIMP . 99, 212

GNU, GLAMP (GNU, Linux, Apache,
MySQL and PHP) system 98

GNU, GNOME (GNU Network Object
Model Environment) 17, 20

GNU, GNU Ada compiler 59, 82
GNU, GNU Affero General Public

License (AGPL) 181, 213
GNU, GNU BASH (Bourne Again Shell)

. 14, 16–17, 130, 185
GNU, GNU C compiler (see also GNU,

GCC) 17, 32, 40, 52, 129
GNU, GNU C Library 14, 16–17, 17,

167, 217
GNU, GNU C++ compiler 127, 129
GNU, GNU CC General Public License

. 165
GNU, GNU Classpath 216–217
GNU, GNU compiler 40
GNU, GNU Emacs . . . 11–14, 17, 26, 27,

52, 130, 149, 212
GNU, GNU Free Documentation License

(FDL) (see also FDL, manuals, and
documentation) 193–201

GNU, GNU ftp distribution site 12
GNU, GNU General Public License

(GPL) (see also GPL) 171–183
GNU, GNU Hurd 18–19, 80
GNU, GNU Lesser General Public

License (LGPL) (see also LGPL)
. 189–191

GNU, GNU libraries 128, 130
GNU, GNU Make 17
GNU, “GNU Manifesto” 27–36
GNU, GNU manuals 61
GNU, GNU Objective C 129
GNU, GNU operating system (see also

both software and GNU) 80
GNU, GNU Privacy Guard (GPG) . . 17,

207
GNU, GNU programs (see also software)

. 29, 80, 241
GNU, GNU Project 7–23, 27, 61, 65,

73, 75, 98, 213, 224
GNU, GNU Radio 118
GNU, GNU Readline 16, 130
GNU, GNU software (see also software)

. 17, 27–28, 29
GNU, GNU software, as distinguished

from the GNU system 10
GNU, GNU tar . 17
GNU, GNU Task List 15

260 Free Software, Free Society, 2nd ed.

GNU, GNU/Linux v. “Linux” (see also
both open source and terminology)
. 73–75

GNU, Harmony 17, 20
GNU, how you can help 241
GNU, initial announcement 25–26
GNU, motivation to write 28
GNU, objections to 31–36
GNU, operating system parts 9, 11,

18, 25, 27
GNU, programs developed to cope with

specific threats 17
GNU, user support 31
GNU/Linux v. “Linux” (see also both

open source and terminology)
. 73–75

Golden Rule 26, 28, 32
Google Docs 211, 219
GPG (GNU Privacy Guard) 17, 207
GPL 13, 16, 127–128, 130, 171–183,

248
GPL, and Microsoft license 160
GPL, BSD license and 93
GPL, copyleft and 12–13
GPL, GPL-covered software (see also

software) 80, 85, 167, 185
GPL, high or low fees and 67
GPL, introduction to . . vi, 165–167, 166,

168
GPL, “open source” and 85
GPL, patent license 179–181
GPL, patent-provisions compromise

. 241
GPL, releasing JavaScript programs

under . 221–222
GPL, universities and 59–60
GPL, use with GNU Affero General

Public License 181
GPL, version 3, compatibility 185
GPL, version 3, limited patent

protection . 186
GPL, version 3, why upgrade to

. 185–187
GPL-covered software (see also

software) 80, 85, 167, 185
Greasemonkey . 221
gzip . 17, 145–148

H
“hacker,” actual meaning of term (see

also “cracker”) 7, 97

hackers 7, 9, 23, 69, 88, 97
Harmony . 17, 20
Hatch, Senator Orrin 115
Havel, Vaclav . 51
Hazlitt, William . 247
HDTV . 118
Heckel, Paul . 146
High Priority Projects list 29
Hillel (the Elder) . 9
Hollings, Senator Ernest 107, 118
Hollywood . 107, 205
Hopkins, Don . 12
Horowitz, Bradley 239
HTML 194, 219, 232–233
Hugo, Victor 139–141
Hungry Programmers 20
Hurd, GNU . 18, 80
Hurd, original name of 18
HyperCard . 146

I
IBM . 150–153
IcedTea (see also Java) 215
identi.ca . 211
Impress, OpenOffice.org 99
India . 60, 83–84
Intel (see also “trusted computing”)

. 40, 205
“intellectual property,” bias and fallacy

of term (see also ownership)
. . 33–34, 38, 89–91, 95, 97, 124, 143

International Institute of Information
Technology . 60

International Organization for
Standardization 158

iPlayer, BBC (see also DRM) 240
ISP (Internet Service Provider) 108,

159
ITS (Incompatible Timesharing System)

. 7, 8, 9, 26

J
Java 74, 215–217, 220–221, 242
JavaFX . 215
JavaScript 210, 212, 219–222
JPEG . 148–149, 194

K
Kansas . 85

Index 261

Kantian ethics . 32
KaZaA (see also both DRM and

treacherous computing) 205,
227–228

KDE . 20
Kelly, Kevin . 125
kernel, GNU Hurd 18, 80
kernel, Linux 19, 98, 141, 156–157,

235–236
Kindle (see also Swindle) 124, 210
King, Stephen . 124
Kodak . 147
Kuhn, Bradley M. 247

L
Lakhani, Karim R. 88
LaMacchia, David 37
“LAMP system,” problematic term (see

also GLAMP) 98
LATEX . 194
Lawrence Livermore Lab 11
lax permissive licensed software 80
Lee, Matt . 221
Lemley, Mark . 89
Les Misérables, Victor Hugo . . . 139–141
Lesser General Public License (LGPL),

GNU (see also LGPL) 189–191
Lessig, Lawrence . viii
LessTif (see also Motif) . . 17, 20, 74, 216
Levy, Steven . 7
LGPL . 189–191
LGPL, altering distribution terms to

GPL . 128
LGPL, and GNU libraries 128, 130
LGPL, as compromise 241
LGPL, GNU C library and 16–17
LGPL, introduction to 167–168
libraries (comp.), as traps . . 74, 215–217
libraries (comp.), C . . 14, 16, 17, 18, 217
libraries (comp.), GNU 16, 128, 130
libraries (comp.), GNU C Library (see

also GNU) 14, 16
libraries (comp.), LGPL and 128,

167–168, 241
libraries, access fees and 121–122
libraries, DMCA, fair use, and (see also

DMCA) . 117
libraries, e-books and 117, 124
licenses (see also Affero, FDL, GPL,

LGPL, X11, BSD, XFree86, and lax
permissive licenses) 165–201

Linux kernel 19, 98, 141, 156–157,
235–236

Linux Magazine . 74
“Linux system,” avoid use of term . . . 98
“Linux,” erroneous use of term (see also

open source) 22, 73–75, 98, 159
Lisp, Common . 27
Lisp, Lisp Machine operating system

. 26
Lisp, Lisp-based window system 25
Lisp, programs . 25
Lotus Marketplace 46
Love, Courtney . 95
Lula da Silva, President 107
LZW (Lempel-Ziv-Welch) data

compression algorithm (see also
patents) 17, 21, 145, 147–148

M
Mach microkernel 18
MacOS (see also DRM) 228, 240
malware . 228–229
manuals (see also manuals, FDL, and

documentation) . . 6, 61–63, 193–201
manuals, FDL and 128, 168
manuals, GNU . 61
manuals, need for 21–22, 66
“market,” erroneous use of term 98
MCC . 129
McGrath, Roland . 14
McMillan, Robert 74
McVoy, Larry 235–236
Mexico . 107
Microsoft, and GPL 160
Microsoft, and patents 158
Microsoft, control over users 108
Microsoft, freedom or power? 247
Microsoft, license 160
Microsoft, monopoly 159–161
Microsoft, Novell-Microsoft pact 186
Microsoft, OOXML format (see also

patents) 141, 231
Microsoft, Palladium (see also both

Palladium and “trusted
computing”) 205–208

Microsoft, war on GPL vi
Microsoft, Word (see also Word)

. 231–233
MIT v, 25–26, 59, 97
MIT, AI (Artificial Intelligence) Lab

. 9, 11, 26, 28, 49

262 Free Software, Free Society, 2nd ed.

MIT, Chaosnet 25, 28
MIT, X Window System and 12
Motif (see also LessTif) . . 20, 22, 74, 216
Motorola . 11, 40
MP3 . 21, 98
“MP3 Player,” problematic use of term

. 98
MPEG-2 . 141, 149
Multics . 9

N
Napster . 120
National Science Foundation (NSF) . . 35
netiquette . 232
New Labour . 239
New York Times 85, 145
New Zealand . 158
NeXT . 129
Nine Inch Nails . 124
noncopylefted free software (see also

software) 5, 79–80
nondisclosure agreements . . . 8, 9, 12, 26,

28
nonfree software (see also software) . . 81
nonfree software, danger of 235–236
nonfree software, insidious and nefarious

addition of 73–75
NoScript . 220
Novell (see also patents, GPL, and

Microsoft) . 186
nroff . 27
NYU . 59, 118

O
O’Reilly Associates 61
Ogg Vorbis . 98
Open Group (see also X Consortium, its

precursor) 130–131
Open Source Initiative (OSI) 84
open source software (see also software)

. 78, 83–84
open source, and fear of freedom . . 87–88
open source, DRM and 86–87
open source, essential difference between

free software and 23, 78, 83–84
“open source,” common

misunderstandings of 84–86
“open source,” consumer values and

. 242
“open source,” the GPL and 85

“open source,” values of . . 22–23, 83–84,
86, 87–88

“open,” misleading use of term . . . 14, 99
OpenMoko (see also cell phones) . . . 228
OpenOffice.org 99, 159
Orwell, George 124, 210
ownership, and damage to social

cohesion 8, 47–48
ownership, and material harm . . . 46–47,

48–50
ownership, and Soviet-style information

control . 37–38
ownership, and users’ freedom 8, 57,

209
ownership, argument against 44–45
ownership, arguments for . . 38–40, 43–44
ownership, developers’ interests v.

public’s prosperity and freedom
. 43, 248

ownership, fallacy of charge of
communism . 54

ownership, obstructing software . . 45–46
ownership, obstructing use of programs

. 46–47
ownership, servers and software 210

P
Palladium 108, 205–208
Parunakian, David 221
Pascal . 11
Pastel, compiler . 11
Patent and Trademark Office, US . . . 166
patents 21, 33, 135–161
patents, Diamond v. Diehr 166
patents, a trivial patent 135–138
patents, analogy between literary and

software 139–141
patents, and/or patent law, as

distinguished from trademarks and
copyrights and/or trademark law
and copyright law 89–91

patents, difference between copyrights
and 143, 157–158

patents, economically self-defeating
. 154

patents, GPL version 3 and 172,
179–181, 185–187

patents, GPL version 2 and 166
patents, GPL version 3 and 169

Index 263

patents, historical significance of
OOXML patent problem (see also
Microsoft) 159–161

patents, IBM and 150–153
patents, LZW data compression

algorithm 21, 145, 147–148
patents, Microsoft monopoly . . . 159–161
patents, Novell-Microsoft pact 186
patents, on abbreviations 149
patents, proposed European Union

software patents directive . . 101, 139
patents, term “intellectual property”

obscures issues raised by 89–91
patents, “uniform fee only” 100
patents, US Patent and Trademark

Office . 166
pay-per-view . 124
“PC,” erroneous use of term 99
PDF . 194, 232–233
peer-to-peer 124, 176, 179, 213
Perkins Smith & Cohen LLP 166
Perl . 61
phishing . 227
“photoshop,” erroneous use of term . . 99
“piracy,” erroneous use of term 6, 8,

38, 40, 99, 114–115, 124
PNG . 148, 194
PostScript language 147
PowerPoint (see also Word) 233
“PowerPoint,” erroneous use of term

. 99
prep.ai.mit.edu . 11
Privacy Guard (GPG), GNU 17, 207
private software (see also software) . . 82
processors . 159, 212
productivity, software 53–54
programmers, and cognitive dissonance

. 47–48
programmers, and creativity and

entitlement 32–34, 38–39
programmers, and productivity . . . 53–54
programmers, incentive for . . . 29, 34–35,

51–52, 53
programmers, income for 12, 14, 32,

32–33, 35–36, 40, 52–53
programmers, psychosocial harm to

. 29, 49–50
proprietary software (see also software)

. 81, 205–208
proprietary software, as distinguished

from SaaS 209–211

proprietary software, freedom or power?
. 247–248

proprietary software, paradox of
permissive license 12

proprietary software, spying on users
. 210, 227, 239–240

proprietary software, to be distinguished
from commercial software 82

“protection,” erroneous use of term
. 100, 124

public domain software (see also
software) 12, 29, 78–79, 127

Q
Qt . 20, 22, 74, 216

R
Radiohead . 124
RAID array . 137
“RAND (Reasonable and

Non-Discriminatory),” avoid use of
term (see also patents) 100

Raymond, Eric . 17
Readline (see also both libraries (comp.)

and GNU) . 130
Readline, GNU (see also libraries

(comp.), GNU) 16
Reagan, President Ronald 56
RealAudio stream 74
RealPlayer (see also DRM) 210,

227–228
Recording Industry Association of

America (RIAA) 117
Red Hat Linux (see also “Linux,”

erroneous use of term) 22
Red Hat Software 20
Resig, John . 221
“Right to Read: A Dystopian

Short Story” (see also DMCA,
DRM, fair use, and libraries)
. 105–107

RJ Reynolds Tobacco Company 57
RMS, Richard Stallman, often referred

to as (see also Stallman) 25
Rumith, Jaffar . 221
Russia . 54, 118

264 Free Software, Free Society, 2nd ed.

S
SaaS, as distinguished from other

network services 211–212
SaaS, as distinguished from proprietary

software 209–211
SaaS, “cloud computing” obfuscating

problems posed by 212
SaaS, dealing with problem of . . 212–213
SaaS, development hosting sites and

. 211
SaaS, e-commerce and 211
SaaS, Facebook and 212
SaaS, Flickr and . 212
SaaS, Google Docs as example of . . . 211
SaaS, joint projects and 211
SaaS, multiplayer games 211
SaaS, publication-and-communication

sites and . 212
SaaS, Savannah and 211
SaaS, sites offering multiple services,

including . 212
SaaS, SourceForge and 211
“Sadi moma bela loza” 69
Savannah . 211
schools, free software in 30, 57–58
Schroeder, Pat . 117
secure boot (see also tivoization) 4
Security Systems Standards and

Certification Act (SSSCA) (see also
Consumer Broadband and Digital
Television Promotion Act
(CBDTPA)) 107, 118

selling, and distribution fees 66–67
selling, free software 10, 14, 65–67
selling, “sell software,” ambiguous term

. 101
selling, software-related services 52
SGAE . 125
SGML . 194
Shakespeare, William 115
shareware (see also software) 81–82
Silverlight (see also Microsoft) 220
Sklyarov, Dmitry 117
Smith, Brett . 165
Software as a Service (SaaS) (see also

SaaS) . 209–213
“software industry,” problematic term

. 101
Software Publishers Association (SPA)

. 37, 108

software, commercial (see also
commercial software) 82, 94

software, copylefted (see also copylefted
software) . 79

software, free (see also free software)
. 77–78

software, freeware (see also freeware)
. 81

software, GNU operating system (see
also GNU) . 80

software, GNU programs (see also GNU
programs) . 80

software, GNU(see also GNU software)
. 80–81

software, GPL-covered (see also
GPL-covered software) 80

software, lax permissive licensed 80
software, noncopylefted free (see also

noncopylefted free software)
. 79–80

software, nonfree (see also nonfree
software) . 81

software, open source (see also open
source software) 78

software, overstretched analogy with
material objects 39

software, private . 82
software, proprietary (see also

proprietary software) 81
software, public domain (see also public

domain software) 78–79
software, shareware 81–82
software, software productivity . . . 53–54
software, software tax 35
Sonny Bono Copyright Term Extension

Act (also known as^^Mthe Mickey
Mouse Copyright Act) 116

Sony Reader (call it the Shreader) . . 124
SourceForge . 88, 211
Soviet Union 37, 55, 108
Spain . 83, 125
spyware . 209–210
Stallman, Richard v, 26, 40, 69,

165–169
Stephenson, Neal . 85
Stross, Charles . 240
Sun Microsystems 74, 147, 215–216
Supreme Court, US . . . 56, 111, 116, 166
Swindle . 124, 227
Swing library . 215
Symbolics . 7

Index 265

T
terminology, importance of using correct

. . . 38, 73–75, 83–88, 89–91, 93–102
TEX 10, 27, 80, 99, 185
Texas Instruments 40
“theft,” erroneous use of term . . . 38, 101
Think magazine . 150
TiVo (see also tivoization) 227
tivoization 4, 169, 185–186, 219, 227
Torvalds, Linus 19, 98
trademarks and/or trademark law . . . 33,

97, 178
trademarks and/or trademark law, as

distinguished from copyrights and
patents and/or copyright law and
trademark law 89–91

trademarks, US Patent and Trademark
Office . 166

traps, donated proprietary software . . 57
traps, JavaScript 219–222
traps, “Linux” distribution companies

. 73
traps, nonfree dependencies 215–217
traps, nonfree libraries . . 20, 74, 215–217
traps, nonfree programming tools 74
traps, “open source” 14
traps, treacherous computing (see also

treacherous computing) . . . 205–208
traps, X Window System 223–225
treacherous computing 101, 108,

205–208
Tridgell, Andrew 236
“trusted computing,” avoid use of term

(see also treacherous computing)
. 101, 108, 205–208

Twitter . 211

U
UK . 239
UN (United Nations) 89
Univates . 60
universities 52, 94, 108, 122, 150
universities, releasing free software at

. 11, 59–60
University of Texas 60
University of Utah 18
Unix compatibility, announcement of

. 25, 27
Unix compatibility, ease of contribution

because of 26, 29

Unix compatibility, games and 16
Unix compatibility, GNU Project

development and 17–18
Unix compatibility, Linux kernel and

. 19
Unix compatibility, reason for 9, 28
users, arguments used to justify control

over . 38–40
users, benefit to 30, 36, 57–58, 228
users, material harm to 46
users, obligations to developers 53
users, premise of author supremacy (see

also ownership) . . 38–39, 55–56, 120
users, psychosocial harm to 46
users, technical support for GNU 31
UUCP . 25, 28

V
Valenti, Jack . 116
Valjean, literary character Jean (see also

Les Misérables) 140–141
VAX . 8
“vendor,” erroneous use of term 102
vi . 11
Vista, Windows (see also both Windows

and DRM) 108, 227, 240
VMS . 9

W
War on Sharing (see also DRM and

copyright) . 124
Wikipedia . 6, 211
Windows 74, 99, 159, 216, 227
Windows Media Player (see also both

DRM and treacherous computing)
. 205, 210, 227–228

Windows, SaaS and 210
Windows, social inertia, short-term

convenience, and (see also citizen
values) . 245

Windows, Vista 108, 227, 240
Winer, Dave . 240
Winston, Patrick . 11
Wired magazine . 74
Wolf, Robert G. 88
Word, and treacherous computing (see

also treacherous computing)
. 159–160, 206–207

Word, attachments 231–233

266 Free Software, Free Society, 2nd ed.

Word, converting Word documents into
free formats 232–233

World “Intellectual Property”
Organization (WIPO) (see also
“intellectual property”) 89, 91,
98, 117

X
X Consortium (see also Open Group, its

successor) 79–80, 130, 223–224
X Toolkit . 20
X Window System 10, 12–13, 79–80,

223–225
X.org . 224
X11 licenses 79–80, 80, 224
X11R6.4 131, 223–224
XCF . 194

Xerox . 49
XFree86 . 19, 224
XFree86 license . 223
XML . 194
xrdb . 224
xset . 224
Xywrite . 149

Y
yacc . 25, 27
Yahoo . 239
Yoda . 23

Z
Zittrain, Jonathan 227–229
zombie machines 227

